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We compare the accuracy of three, mixed explicit–implicit schemes for simulating
nonrelativistic, radiative hydrodynamic phenomena in the equilibrium diffusion limit.
Only the “low-energy-density” regime is considered, where it is possible to ignore the
effects of radiation pressure and energy density in comparison to the fluid pressure
and energy density. The governing equations are then those of compressible Eulerian
hydrodynamics with a nonlinear, radiative heat-transfer term appearing in the energy
equation. All three finite-volume methods in this study utilize an explicit Godunov
method with an approximate Riemann solver to integrate the Euler equations, but
differ in their iterative treatment of the radiation diffusion term, which is handled
in an “operator-split” fashion. In the first method, diffusive effects are computed
with a linearized implicit technique that does not converge nonlinearities within a
computational time step. In the other two methods, a Jacobian-free Newton–Krylov
procedure is used to converge the nonlinearities, and improved accuracy (but not
always greater efficiency) is achieved over the more traditional linearized–implicit
approach. The two Newton–Krylov methods differ in their order of accuracy in time;
one is strictly first-order accurate, while the other attempts to achieve second-order
accuracy by making use of a predictor–corrector architecture. Several examples
are considered to demonstrate the convergence properties of the three schemes, but
attention is limited to spherically symmetric problems such as the one-dimensional
point explosion. c© 2001 Academic Press
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I. INTRODUCTION

The transport of radiation and its interaction with matter play an important role in astro-
physics, inertial confinement fusion, and other high-temperature hydrodynamic systems.
The processes of emission, absorption, and scattering of radiation result in an exchange of
momentum and energy between the radiation field and matter that can greatly affect fluid
motion [1, 2]. Typically, radiative phenomena occur on time scales that differ by many
orders of magnitude from those characterizing hydrodynamic activity [3]. As a result, the
accurate and efficient modeling of radiation hydrodynamics with high-resolution numerical
codes presents significant computational challenges.

Although high-resolution methods for simulating pure hydrodynamic flows are well
established [4–7], their extension to coupled radiative regimes has only recently begun (e.g.,
see Dai and Woodward [8, 9], Lowrieet al.[10], Balsara [11, 12], and references therein). In
practice, both explicit and implicit methods are currently used for radiative hydrodynamic
calculations. While explicit methods are usually simple to implement, associated time-
step sizes often need to be restrictively small to satisfy stability conditions [13]. Implicit
schemes allow much larger time-step sizes to be taken [14], but strong nonlinearities in the
radiation terms are difficult to treat; frequently, a linearized solution is sought, which limits
the accuracy of the scheme, or a nonlinear iteration procedure is employed. One of the most
popular nonlinear iterative schemes is Newton’s method [15], which in many circumstances
allows an accurate treatment of nonlinearities. Standard Newton methods have a significant
disadvantage, though, in that they require the formation and inversion of a Jacobian matrix,
which is expensive in terms of CPU cost when a large system of equations is involved [16].

Newton–Krylov schemes [17, 18], on the other hand, achieve Newton-like, nonlinear
convergence properties without this expense. The method is a unique combination of an
outer Newton-based iteration and an inner conjugate-gradient-like (Krylov) iteration. The
effects of the Jacobian are probed only through approximate matrix–vector products required
in the Krylov iteration. Previously, Knollet al. [16] demonstrated the benefit of using
Jacobian-free Newton–Krylov methods to converge nonlinearities within a time step for
a class of radiation diffusion problems. Here, we explore the consequences of including
hydrodynamics in the description.

Toward this end, we present an accuracy comparison in time of three, mixed explicit–
implicit algorithms for modeling radiative hydrodynamic phenomena. All three methods
are finite-volume based, and separate the effects of hydrodynamics and radiation transport
into two stages. The first stage, which is common to all three schemes, employs an explicit
Godunov method [5, 7, 19] with a approximate Riemann solver to integrate the inviscid
hydrodynamic equations in an Eulerian coordinate frame. The influence of nonlinear, ra-
diative thermal conduction is then accounted for in the second stage, which differs from
scheme to scheme. In one method, linear approximations of nonlinear terms are used, with
the resulting system of implicit equations being solved by a linear iterative solver. Of course,
this “linearized implicit” approach does not converge nonlinearities within a computational
time step, and hence lacks (nonlinear) numerical consistency [5, 14]. In the other two al-
gorithms, a nonlinear, iterative Newton–Krylov solver is used to converge nonlinearities; it
is shown that much larger time steps can be taken for the same level of accuracy when the
nonlinear residual is monitored and converged.

A related approach that also combines an explicit Godunov scheme with an implicit
iterative method to solve coupled sets of radiative hydrodynamic equations was proposed by
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Dai and Woodward in Ref. [8]. In that study, as here, attention was limited to the equilibrium
diffusion limit [2, 20], and the effects of radiative thermal conduction were temporally
“split” from the hydrodynamics. We should point out, however, that the scope of the present
investigation differs from that of Ref. [8] in at least two significant ways. First, we are only
considering the “low-energy-density” regime, in which the contribution of radiation pressure
and energy density can be neglected in comparison to the total (fluid) pressure and energy
density. Dai and Woodward, on the other hand, retained these contributions by developing
a specialized Riemann solver to explicitly account for radiative terms in the conservation
laws. Second, in order to converge nonlinearities in the radiation diffusion equation, Dai and
Woodward developed an iterative procedure based solely onlinear solvers such as Gauss–
Seidel [15] and multigrid [21]. In contrast, the focus in this paper is on examining the
utility of Newton-based iterative techniques for radiative hydrodynamic calculations and,
in particular, how these techniques perform in comparison to linear methodologies. (The use
of linear iterative solvers is currently a common practice in many radiation hydrodynamics
codes; see Baldwinet al. [22] for a comprehensive review of five of the more popular
schemes used in this context.)

The organization of this paper is as follows. In Section II, the governing equations
of radiation hydrodynamics are written down in the equilibrium diffusion limit and then
specialized to the one-dimensional, low-energy-density regime. In Section III, we outline
the salient aspects of the three numerical schemes considered here: (i) the linearized implicit
approach; (ii) a one-pass, iterative Newton–Krylov scheme for converging the nonlinearities
within the radiation diffusion equation; and (iii) a two-step Newton–Krylov procedure
with a predictor–corrector architecture that attempts to achieve second-order accuracy in
time. Numerical results for several spherically symmetric test problems are presented in
Section IV. Finally, in Section V, the conclusions of the paper are given, as well as a
prospectus of future work.

II. PHYSICAL MODEL

For “optically thick” materials, gradients of the radiation density do not change appre-
ciably over a distance of the order of the radiation mean-free path [3]. This is known as
the “diffusion approximation.” In this limit, and in the case that local thermodynamic equi-
librium exists between the radiation field and the fluid, the nonrelativistic equations of
radiation hydrodynamics can be written as [2, 20]

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂

∂t
(ρv)+∇ · (ρvv)+∇(p+ pν) = 0, (2)

∂

∂t
(ρε + ρv2/2+ Eν)+∇ · [(ρε + ρv2/2+ p+ pν + Eν)v] = ∇ · (κ∇T), (3)

whereρ, p, v, ε, andT are the mass density, pressure, flow velocity, internal energy per
unit mass, and temperature of the fluid, respectively. Here,κ is the coefficient of thermal
conduction, which may characterize material and/or radiative properties, and in general is
a nonlinear function ofρ andT . The above description applies to “gray” materials such
that the opacityω ∝ (ρκ)−1 is independent of the frequency of photons in the radiation
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field. In addition, we have thatpν = Eν/3= 4
3σ T4/c, wherepν is the radiation pressure,

Eν is the radiant energy density,σ is the Stephan–Boltzmann constant, andc is the speed
of light. In the low-energy-density regime,pν andEν are neglected in comparison top and
ρε + ρv2/2, respectively. Equations (1)–(3) constitute a closed system if an equation of
state,p = p(ρ, T), is specified. Throughout this paper, we assume an ideal gas equation of
state,p = RρT = (γ − 1)ρε, whereR is the gas constant per unit mass andγ is the ratio
of specific heats. We also make the somewhat artificial choiceγ = 5/4 in order to be able
to compare our results with those in Refs. [23, 24].

In the case of spherical symmetry, such that the independent variables are the radial
coordinater and the timet only, Eqs. (1)–(3) in the low-energy-density regime reduce to

∂ρ

∂t
+ 1

r 2

∂

∂r
(r 2ρv) = 0, (4)

∂

∂t
ρv + 1

r 2

∂

∂r
(r 2ρv2)+ ∂p

∂r
= 0, (5)

∂E

∂t
+ 1

r 2

∂

∂r
r 2v(E + p) = 1

r 2

∂

∂r

(
r 2κ

∂T

∂r

)
, (6)

whereE = ρε + ρv2/2 is the total energy density of the fluid. For the purposes of this
study, we assume thatκ can be written as a power law in density and temperature,κ =
κ0ρ

aTb, whereκ0, a, and b are constants. This choice corresponds to an opacityω ∝
ρ−(a+1)/Tb, which is equivalent to the functional form assumed by Marshak in Ref. [25].
The remainder of this paper is concerned with the accurate numerical solution of Eqs. (4)–
(6) for different values ofa andb, and for different initial conditions. Let us now outline
the three numerical schemes considered for this purpose.

III. TIME-INTEGRATION METHODS

For all three methods, the solution strategy can be loosely described as “operator splitting,”
which is a common approach in numerical codes used to model multiple physical phenomena
[1]. For our purposes here, the essential ideal is to separate hydrodynamic and radiative
processes into two stages during each time step. In the first stage, the hydrodynamic (Euler)
equations are solved, and in the second stage, the total energy density is updated to account
for the effects of radiation transport. The three algorithms are distinguished by the way in
which this second stage is carried out, and in particular, whether or not nonlinearities in the
radiative conduction term are converged.

Specifically, the splitting procedure can be accomplished by writing Eqs. (4)–(6) as a
system of hyperbolic conservation laws [26],

∂U
∂t
+ ∂(AF)

∂V
+ ∂G

∂r
= 0, (7)

plus a diffusion equation

∂E

∂t
= ∂

∂V

(
Aκ

∂T

∂r

)
, (8)
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where

U ≡
 ρ

ρv

E

, F(U) ≡

 ρv

ρv2

v(E + p)

, G(U) ≡
0

p

0

. (9)

Here,V = 4πr 3/3 is the generalized volume coordinate in one-dimensional spherical ge-
ometry, with A = dV/dr = 4πr 2 the associated cross-sectional area. Note that the flux
vectorF differs from the usual planar case in that a pressure term is absent from the second
entry. The solution algorithm proceeds by consecutively solving Eqs. (7) and (8) at each
time step. Initially, new values of the mass, momentum, and total energy densities are found
from the solution of the Euler equations [Eq. (7)]. The total energy density obtained in this
step, though, is only an intermediate result, which is then updated according to Eq. (8).
Note that the value ofE determined in the hydrodynamic stage serves as the initial value
for integrating Eq. (8).

All three numerical approaches considered in this paper utilize a Godunov method with a
modified version of Roe’s approximate Riemann solver [27] to integrate the Euler equations
in Eq. (7). The use of the word “modified” here relates to the fact that the solution procedure
is carried out in terms of primitive variablesρ, v, andp, instead of conserved variablesρ, ρv,
andE. The three algorithms differ, however, in the iterative method used to solve Eq. (8);
two of them employ a nonlinear Newton–Krylov scheme [17, 18], while the other relies on
a linear solution methodology. Let us first outline the Godunov method that is common to
all three algorithms, and then proceed to a discussion of the different conduction modules.

The basic idea in Godunov’s original method [19] is to first assume a piecewise constant
distribution of the conserved variablesU in each computational cell. Then, the resulting
initial-value problem for the Euler equations is solved region-by-region in the flow using
these piecewise constant data. Effectively, this generates a sequence of local Riemann prob-
lems [7] with left and right state vectors centered at the boundaries between grid cells. For
the Euler equations, solutions of the Riemann problem may consist of shock waves, contact
discontinuities, and/or rarefactive waves. Once the Riemann solutions are determined, the
updated values of the hydrodynamic variables are pieced together by interpolating back
onto the computational grid.

Formally, the averaging procedure in a Godunov method is performed by replacing the
original dataU(r, t) with a discretized set of piecewise constant states:

Un
j ≡

1

1Vj

∫ r j+1/2

r j−1/2

U(r, tn) dV. (10)

Here, we consider a spherically symmetric numerical grid{r j } in the radial direction, where
j is a positive integer, and1r j ≡ r j+1/2− r j−1/2 is the mesh spacing. The braces here are
used to represent allj values from 1 toN, whereN is the number of grid cells. In what
follows, we assume a uniform mesh so that the spacing between cells is simply given
by 1r . The boundary between thej th and j + 1 cells is denoted byr j+1/2 and the cell
volume is1Vj ≡ V(r j+1/2)− V(r j−1/2). The superscriptn signifies thenth time level
wheretn ≡ n1t , and1t is the time step size. Here, we consider only interior points of
the computational grid; boundary conditions are addressed in our discussion of the test
problems in Section IV.
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With these definitions, we can apply Godunov’s method to calculate the updates of the
hydrodynamic variables. Integrating Eq. (7) over the cell volume1Vj and a time step
tn ≤ t ≤ tn+1 yields

Un+1
j ≈ Un

j −
1t

1Vj

(
Aj+1/2Fn+1/2

j+1/2 − Aj−1/2Fn+1/2
j−1/2

)− 1t

1r

(
Gn+1/2

j+1/2 −Gn+1/2
j−1/2

)
, (11)

whereAj±1/2 ≡ A(r j±1/2) is the area between thej th and j ± 1 cells, and we have used the
approximationdV/dr ≈ 1Vj /1r to obtain the last term on the right side of the equation
above. The symbolsFn+1/2

j±1/2 andGn+1/2
j±1/2 denote the time averages ofF andG at r j±1/2:

Fn+1/2
j±1/2 ≡

1

1t

∫ tn+1

tn

F
[
U
(
r j±1/2, t

)]
dt, (12)

Gn+1/2
j±1/2 ≡

1

1t

∫ tn+1

tn

G
[
U
(
r j±1/2, t

)]
dt. (13)

The problem then reduces to estimating these quantities from the data{Un
j } with an ap-

propriate Riemann solver. Once the Riemann solution is found, the hydrodynamic stage
of the calculation is complete for a single time step. We employ a modified Roe’s scheme
to perform this stage of the calculation, the details of which are given in the Appendix.
Let us now turn to a discussion of the different ways the three codes incorporate nonlinear
conduction effects into the hydrodynamic solution.

A. A Linearized Implicit Scheme for the Radiation Diffusion Equation

The first method for integrating Eq. (8) that we consider is a linearized implicit technique.
The distinguishing features of this approach to bear in mind are that it is first-order accurate
by linearized analysis, and nonlinearities are not converged within a time step. By this we
mean that the nonlinear coefficient of thermal conductionκ in Eq. (8) is evaluated with
previous time-step solutions so that we have alinear implicit problem to solve at each
time level. Incorporating conduction effects into the hydrodynamic solution in this way is
sometimes referred to as “classical” operator splitting.

The integration scheme for our radiative hydrodynamic equations in this case proceeds
as follows. At the beginning of then+ 1 time step, updates of mass, momentum, and total
energy densities are determined from solving the Euler equations in Eq. (7) with the explicit
Godunov scheme outlined above. Schematically, we can represent this process as

Un→ U∗ =


ρn+1

j

(ρv)n+1
j

E∗j

 .

The total energy density{E∗j } obtained in this stage, however, is only an intermediate
result; the effects of thermal conduction must now be included. This is accomplished by
temporarily suspending hydrodynamic activity, holding the variablesρn+1

j and (ρv)n+1
j

fixed, and solving the finite-volume form of the diffusion equation in Eq. (8) for the new
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temperaturesTn+1
j . That is, we must solve

cVρn+1
j Tn+1

j + (ρv2)n+1
j

/
2− E∗j

1t

= Aj+1/2 κn
j+1/2

(
Tn+1

j+1 − Tn+1
j

)/
1r

1Vj
− Aj−1/2 κn

j−1/2

(
Tn+1

j − Tn+1
j−1

)/
1r

1Vj
, (14)

wherecV = R/(γ − 1) is the specific heat at constant volume. Here, we have related the
total energy density to the temperature according toE = cVρT + ρv2/2. The coefficient
of thermal conductionκ in Eq. (14) is evaluated at cell interfaces by linear interpolation of
the cell-centered densities and temperatures:

κn
j+1/2 = κ0

(
ρn+1

j + ρn+1
j+1

2

)a(
Tn

j + Tn
j+1

2

)b

. (15)

Sinceκ is evaluated at the old time level of temperature, Eq. (14) islinear in the unknowns
{Tn+1

j }, and the resulting tridiagonal system can be solved in a number of ways. The time
step is complete once the new temperature profile is determined, and the solution vector is
updated accordingly:

U∗ → Un+1 =


ρn+1

j

(ρv)n+1
j

En+1
j

 .

The process then repeats with these values serving as the initial data for the next time step.
One possibility for solving Eq. (14) is to use a direct method such as the standard tridi-

agonal solver [15]. This technique is extremely efficient for one-dimensional problems, but
unfortunately, its efficacy does not extend to higher dimensions. For that reason, we choose
not to employ a tridiagonal solver as a benchmark of standard linear-scheme performance
with which to assess the accuracy and efficiency of Newton–Krylov algorithms for this
class of problems. Any conclusions reached by doing so could not be expected to carry
over into two or three spatial dimensions, which is undoubtedly where the true utility of
Newton–Krylov schemes lies for radiative hydrodynamic calculations. Instead, the solution
methodology that we adopt is a linear iterative solver. The particular solver that we use is
known as GMRES [17] with symmetric Gauss–Seidel preconditioning [14]. Some of the
details of the GMRES method will be explained in the next section.

Currently, linear implicit methods are widely used in radiation hydrodynamics codes [1,
22]. This is true despite the fact that usually no facility exists in the computational algorithm
for monitoring the size of nonlinear residual terms or for quantifying the error introduced
into the solutions as a result of a linearization procedure. Indeed, in our treatment here,
nonlinearities have been completely disregarded by evaluatingκ(ρ, T) with old time-level
information for the temperature. As a general practice, the extent to which this numerically
inconsistent process [5, 14] degrades the fidelity of solutions is difficult to assess, but un-
doubtedly, significant errors can be introduced [16]. We return to this issue in Section IV
when we discuss the performance of linearized implicit schemes as applied to our particular
radiative hydrodynamic examples. In the next two sections, we explore consistent alterna-
tives to the linearized implicit technique known as iterative Newton–Krylov methods, in
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which nonlinear residual terms are monitored and converged within a computational time
step. From previous studies without hydrodynamics, we expect these methods to permit
time steps that are larger than those in the linear implicit approach for the same level of
accuracy.

B. A Newton–Krylov Scheme for the Radiation Diffusion Equation

The computational difficulty associated with integrating Eq. (8) lies in the coefficient
of thermal conductionκ, whose temperature dependence is modeled as a nonlinear power
law (e.g.,κ ∼ T13/2). In a true implicit scheme, a direct method cannot be applied to
this problem; some sort of nonlinear iterative procedure is necessary. Here, we describe a
first-order, iterative Newton–Krylov method and its use in evaluating the diffusion term in
Eq. (8). Unlike the linear implicit method discussed in the previous section, the emphasis in
this scheme is to monitor and converge nonlinearities below a certain tolerance before the
completion of a time step. Compared to the standard Newton’s method, the Newton–Krylov
approach is advantageous in that one can avoid the computational difficulty and expense of
forming and inverting the Jacobian matrix.

Since a discussion of Newton’s method can be found in many textbooks on numerical
methods (e.g., see Ref. [15]), we shall not be concerned with trying to give a complete
description of it here. Rather, our intent is to underscore the unique features of composite
Newton–Krylov schemes. In particular, we wish to elucidate the Jacobian-free aspect of
coupling Newton’s method with a linear Krylov solver, which we describe briefly below.
For additional information on Krylov methods, the reader is referred to Refs. [28, 29].

The first step in the implementation of any Newton-based algorithm is to determine the
appropriate nonlinear function(s) at each grid cell. In our case, these functions are defined
from the discretized version of Eq. (8). Specifically, we have

f j =
cVρn+1

j Tn+1
j + (ρv2)n+1

j /2− E∗j
1t

− Aj+1/2κ
n+1
j+1/2

(
Tn+1

j+1 − Tn+1
j

)
/1r

1Vj

+ Aj−1/2κ
n+1
j−1/2

(
Tn+1

j − Tn+1
j−1

)
/1r

1Vj
, (16)

where

κn+1
j+1/2 = κ0

(
ρn+1

j + ρn+1
j+1

2

)a(
Tn+1

j + Tn+1
j+1

2

)b

. (17)

The goal of the Newton–Krylov scheme is to iteratively drive the functionf j toward zero
at each grid cell. Let us now explain how this is accomplished.

In a standard Newton method, one seeks the solution of a nonlinear system of equations
written in the formf(x) = 0, wherex is known as the “state vector.” For the problem at hand,
we havex = {Tj }, andf(x) = { f j }, where the functionsf j are those defined in Eq. (16).
To determinex, Newton’s method prescribes an iterative procedure derived from thelinear
system of equations

Jkδxk = −f(xk), (18)

whereJ represents the Jacobian matrix,k is a nonlinear iterative index, andδx is the update
of the state vector, which is found from multiplying both sides of Eq. (18) by the inverse of
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J. New values ofx are computed from the recurrence relationxk+1 = xk + δxk. The process
is considered complete once‖f(xk)‖2 is less than some nonlinear convergence tolerance.
For our purposes here, this tolerance is either 10−8 or 10−7.

The primary disadvantage of Newton’s method in its standard implementation is that it can
be difficult and time consuming. To form and then invert the Jacobian matrix in Eq. (18), one
must take partial derivatives off with respect to the different components of the state vectorx,
and one must do this for each stage of the nonlinear iteration process. For some systems, the
evaluation of the Jacobian coefficients can be carried out analytically, but more likely, some
sort of numerical scheme for estimating the derivatives is required. Such an exercise can be
unduly problematic and expensive, particularly when a large nonlinear system of equations
is involved, or when the functional dependences of physical variables are expressed in tab-
ular form. In the present study, we avoid this difficulty by coupling Newton’s method with a
Krylov solver [28] that never requires the formation of the actual Jacobian matrix. The par-
ticular Krylov method that we employ is the GMRES algorithm due to Saad and Shultz [17].

In a Krylov method, the solution update is expressed as a linear combination of so-called
Krylov vectors(r0, Jr0, J2r0, . . . , Jl r0), where the indexl denotes the level of the Krylov
iteration, andr0 is an initial linear residual defined byr0 = −f(xk)− Jkδxk0. Here, the
symbol δxk0 represents an initial guess for the update of the state vector at a particular
nonlinear iteration level; this value is typically taken to be zero. Although the GMRES
iteration takes place at a fixed nonlinear indexk, we find it helpful to write the update with
two indices,k andl . The expansion ofδxkl can be written as

δxkl = δxk0+
l−1∑
m=0

βmJm
k r0, (19)

where theβm’s are scalar coefficients. These coefficients are determined for thel th lin-
ear GMRES iteration by minimizing the quantity‖Jkδxkl + f(xk)‖2 with a least-squares
method. This requires the use of the Krylov vectors constructed during the previousl − 1
iterations. The condition for the termination of a linear GMRES iteration is given by

‖Jkδxkl + f(xk)‖2 < τ‖f(xk)‖2, (20)

where‖f(xk)‖2 is the residual of the present nonlinear iteration, andτ is a linear conver-
gence tolerance; typically, we takeτ = 10−2. Throughout this study, we limit the maximum
number of Newton and GMRES iterations to 15 and 100, respectively.

Formulated in this way, our scheme is more correctly described as an “inexact” Newton’s
method because the convergence criterion is adjusted during each nonlinear iteration. This
is a useful feature that can do much to improve the efficiency of Newton’s method for
the following reasons. When the nonlinear residual is large and the solution is far from
convergence, there is no point in spending much computational effort solving the linear
problem well. However, when the solution is nearly converged, it makes sense to expend
more effort in the linear routine since the superlinear convergence rate in the final Newton
iterations is tightly coupled to the accuracy of that solution [30].

Another noteworthy quality of the Newton–Krylov scheme is the fact that the GMRES
algorithm involves only theproductof the Jacobian matrix with a vector. This fact plays
a key role in the utility of the method. Because the Jacobian–vector product can be well
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approximated by a first-order Taylor series as [16, 18]

Jy ≈ [f(x+ εy)− f(x)]/ε, (21)

the Jacobian by itself is never required, which is highly desirable from a computational
standpoint. Here, the vectory is an element of the Krylov basis, and the scalarε is a small
perturbation. In this study, the value ofε is given by

ε ≡ η
∑N

j=1 xj

N‖y‖2 , (22)

where the constant parameterη has a value of 10−5.
To further enhance the performance of our Newton–Krylov scheme, we employ a “pre-

conditioner.” Preconditioning is a process that approximates the inverse of the Jacobian
matrix in such a way as to efficiently cluster together the eigenvalues of the iteration matrix
[16, 30]. This in turn reduces the number of GMRES iterations required to reach conver-
gence. The inverse of the preconditioning matrix is much easier to form than the inverse of
the true Jacobian of the system.

Let P denote the preconditioning matrix such thatJP−1 ≈ I . The system of equations we
wish to solve is then

JP−1 Pδx = −f(x). (23)

We chooseP to be the tridiagonal matrix resulting from the linearized implicit scheme
discussed in Section IIIA. Letting the vectorq denote the productP δx, the left side of
Eq. (23) is approximated as before using a first-order Taylor expansion

JP−1q ≈ [f(x+ εP−1q)− f(x)]/ε. (24)

The inverse ofP is found iteratively,but not to convergence, using a symmetric Gauss–
Seidel technique [14]. In other studies, preconditioners based on the multigrid method have
also been used [30–32].

The description above highlights the important principles of Newton–Krylov algorithms
as employed in this investigation. Because of their utility for accurately and efficiently
integrating other nonlinear systems of equations, we have been motivated to apply Newton–
Krylov methods to radiation hydrodynamics. Previous work [16, 30] has shown that
Newton-like nonlinear-convergence behavior can be achieved without undue computational
expense through the approximate matrix–vector multiplication procedure in the GMRES
routine. This savings in computational effort is principally a result of the fact that the
Jacobian matrix never has to be formed or inverted, which is the impetus for referring to
the scheme as “Jacobian-free.” In the previous studies cited above, significantly improved
performance over traditional linearized–implicit methods was documented using Newton–
Krylov techniques to converge nonlinearities in nonequilibrium diffusion calculations; our
aim here is to see if this trend extends to the present class of problems.

Note that we are coupling a Newton–Krylov scheme to a Godunov-based hydrody-
namic integrator in the same way as the linearized implicit method. Once again, the pro-
cedure at each time step is first to find provisional updates for the hydrodynamic vari-
ablesU∗ = [ρn+1, (ρv)n+1, E∗]T with the Godunov scheme. Unlike the linear implicit
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method, though, the approach here is then to incorporate the effects of radiation transport
by iteratively solving Eq. (18) to convergence for the temperature profile{Tn+1

j } using a
Newton–Krylov method. The temperature data are then used to compute the final update
Un+1 = [ρn+1, (ρv)n+1, En+1]T . One disadvantage of this version of the integration scheme
is that it is strictly first-order accurate. In the next section, we describe a possible technique
for extending the coupled Godunov/Newton–Krylov algorithm to higher order in time for
smooth regions of the fluid flow. This is done by embedding the Newton–Krylov procedure
within the predictor–corrector structure of Hancock’s two-step Godunov solver [33].

C. A Newton–Krylov Method within a Predictor–Corrector Framework

We now consider an approach for achieving higher-order accuracy in time with our cou-
pled Godunov/Newton–Krylov method. One likely means of improving the time accuracy
is to structure the Newton–Krylov algorithm within a predictor–corrector framework [15].
Since the Godunov method used to integrate the hydrodynamic equations already possesses
this architecture, it is straightforward to modify the algorithm accordingly. Our procedure
for implementing this modification can be summarized as follows.

The first step is to replace the implicit diffusive fluxes in Eq. (16) with a combination of
both implicit and explicit terms. To do this, it is convenient to introduce an implicit–explicit
parameterθ that varies between zero and one. Forθ = 1 the Newton–Krylov algorithm is
fully implicit, whereas forθ = 0, it is completely explicit; the choiceθ = 1/2 corresponds
to an equal mixture of explicit and implicit terms (as in the Crank–Nicolson method [34]).
For simple linear diffusion equations, this choice is a common one because it provides both
unconditional stability and second-order accuracy in time [6]. In the predictor–corrector
formulation of our coupled algorithm, the Newton–Krylov iterative process is called twice
during each time step, and a different value ofθ is used for each call. During the “predictive”
Newton–Krylov iterations, where there is no reason to solve the problem to high accuracy,
we chooseθ = 1, while for the “corrector” stage, we setθ = 1/2 in an effort to achieve
second-order convergence.

With the parameterθ , the discrete approximation for (the negative of ) the heat flux at
each cell interface can be written in the mixed implicit/explicit representation as

dj+1/2 = θ κn+1
j+1/2

(
Tn+1

j+1 − Tn+1
j

)/
1r + (1− θ)κn

j+1/2

(
Tn

j+1− Tn
j

)/
1r. (25)

Here, the explicit form of the coefficient of thermal conduction,κn
j+1/2, is to be evaluated

using old time-level information for both temperatureand density. Note that this differs
from the expression in Eq. (15). The appropriate set of nonlinear functions is

f j =
cVρn+1

j Tn+1
j + (ρv2)n+1

j

/
2− E∗j

1t
− Aj+1/2dj+1/2− Aj−1/2dj−1/2

1Vj
. (26)

As before, the goal of our Newton–Krylov procedure is to iteratively drive the functionf j

below some specified nonlinear convergence tolerance at each grid cell.
The predictor stage of the calculation begins by first invoking the Newton–Krylov method

with θ = 1 in Eq. (25) to compute cell-centered temperature values at the half time level:
{Tn+1/2

j }. These data are used to estimate the divergences of the heat flux at each cell, which
are then added to the time derivatives ofρε and p used in the primitive-variable Riemann
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solver; see Eqs. (48) and (49) in the Appendix. Specifically, we add the factor

Aj+1/2 κ
n+1/2
j+1/2

(
Tn+1/2

j+1 − Tn+1/2
j

)/
1r − Aj−1/2 κ

n+1/2
j−1/2

(
Tn+1/2

j − Tn+1/2
j−1

)/
1r

1Vj

to the right-hand side of Eq. (48). The redundant expression for the time derivative of the
pressure in Eq. (49) is modified by the addition of the same term, but with a multiplicative
factor of (γ − 1) in front (see Appendix). Here, the coefficients of thermal conductionκ

n+1/2
j+1/2

are evaluated with temperature data at the half time leveln+ 1/2, but with density values
at the old time leveln. The evaluation of time-centered expressions for the hydrodynamic
variables [Eqs. (44) and (45)] in this way constitutes the “predictive” part of the algorithm.
In the corrector stage, the Riemann problem is solved to give the provisional updates of the
conserved variablesU∗ = [ρn+1, (ρv)n+1, E∗]T . This is followed by a second call to the
Newton–Krylov scheme withθ = 1/2 to determine the temperature at the time leveln+ 1,
and hence the final updateUn+1 = [ρn+1, (ρv)n+1, En+1]T .

Formulated in this way, conduction effects have an opportunity to provide “feedback”
and influence hydrodynamic motion during each time step. It can be said that this method
of coupling nonlinear radiation diffusion with hydrodynamics retains less of the character
of operator splitting than the previous Newton–Krylov scheme, which itself differs from
the traditional brand of splitting typified by the linearized implicit approach. Before com-
paring the performance of the linearized implicit, Newton–Krylov, and predictor–corrector
Newton–Krylov schemes on several numerical examples, we first turn to a brief description
of the method of time step selection used in this study.

D. Time Step Control

Time step control in radiative hydrodynamic computations is complicated by the fact
that the coefficient of thermal conductionκ is usually a (nonlinear) function of density
and temperature. In general, there is no optimal method of selecting time step sizes in this
case. Over the years, though, several techniques have been developed and utilized. For
schemes that do not converge nonlinearities, one of the most popular approaches is based
on monitoring the relative change in a dependent variable such as the total energy densityE.
(See Bowers and Wilson [1] for a discussion of this common practice.) The process begins
by first making a conservative initial guess for the time step1t that is likely to satisfy all
stability requirements. The idea is then to increase the size of1t as much as possible in a
systematic way. This is done by first computing the maximum relative change inE over a
single time step according to

(
1E

E

)n+1

= max
j

(∣∣En+1
j − En

j

∣∣
En+1

j + E0

)
, (27)

where the parameterE0 in the denominator is added for regularity and is usually an estimate
for the lower bound of the energy density. The new time step is then determined from

1tn+1 = 1tn

√
(1E/E)n+1

(1E/E)max
, (28)
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where(1E/E)max is a specified target value for the relative change inE; typically, this
value is chosen to lie between 5 and 20%. The use of the square root in Eq. (28) is an attempt
to make the new time step smoothly approach the target value. The justification often cited
for employing this method of time step selection is that as long as the relative change in
energy is kept “small,” the errors introduced by a linearization procedure are not significant.

An alternate method for selecting time step sizes in nonlinear diffusion problems was
suggested by Rider and Knoll [35] and is based on a heuristic criterion for estimating
nonlinear wave speeds. The essential idea is to replace the complicated system of equations
involved with a simplified hyperbolic model given by

∂E

∂t
+ v f

∂E

∂r
= 0, (29)

where the “front velocity”v f is an unknown function. The selection procedure is then to
specify a desired front-CFL value from which the time step is computed according to

1tn+1 = front-CFL× 1r

vn
f

. (30)

In this approach, the prescription for calculating the front velocityv f is

vn
f =
‖|1En|/1tn‖1
‖|1En|/1r ‖1 . (31)

Coupled with the Newton–Krylov technique, the front-CFL method of time step control
in nonlinear diffusion problems has proven [40] to contribute to high-quality results with
reduced cost compared to the standard1E/E method and is used exclusively in this
investigation. We should mention, though, that for more complex, radiative hydrodynamic
systems, the general criterion by which the front velocity is to be selected with this approach
is unclear. It is likely that the expression given in Eq. (31) will require modification when
applied to problems more complicated than those considered in this study.

We should also remark that in our numerical codes, the actual time-step selection process
involves a comparison with an estimate of1t based on pure fluid motion for a hydrodynamic
CFL number of about 1/2. The procedure is always to select the most restrictive of the two
estimates. Furthermore, the size of1t is never permitted to increase by more than a factor
of 2 between any two consecutive time steps. Let us now consider the application of the
time-integration techniques described in this section to a series of one-dimensional test
problems.

IV. RESULTS

In this section, we investigate the performance of our three numerical schemes on sev-
eral one-dimensional problems in spherical geometry. Our intent is to compare the time
accuracy, convergence properties, and CPU cost of the three methods for solving the same
problem. As we shall see, the predictor–corrector Newton–Krylov scheme is consistently
and significantly more accurate for roughly the same time step size than both the linearized
implicit and first-order Newton–Krylov methods, but also more expensive in terms of CPU
cost. For each of the test problems considered, the time accuracy comparisons are made at



112 BATES ET AL.

a fixed grid size that was chosen to give a reasonably well-converged solution. We should
point out, however, that the scope of the present study was limited to errors associated with
time step size only; we are not concerned here with presenting results of the convergence
behavior of the solutions under refinement of the spatial grid. All runs in this study were
performed in double precision on a Sun Ultra 60 computer operating at 360 MHz.

As mentioned in the previous section, the front-CFL technique of time step control [35]
is used throughout this investigation. While convergence trends are similar for both the
1E/E and front-CFL methods, the latter appears to be a more advantageous means of time
step selection for the types of radiative hydrodynamic problems studied here. In all cases,
the time accuracy and convergence properties of the three methods are examined by plotting
the absoluteL2 error in the final temperature profile versus the specified (target) front-CFL
value. The absoluteL2 error is defined as[

N∑
j=1

(
Tj − Te

j

)2

]1/2

,

where the dataTe
j constitute the “exact” solution for1t → 0. This is taken to be the result

from a run using the predictor–corrector Newton–Krylov method with an exceedingly small
front-CFL value (typically 10−4–10−3).

The first test case that we consider is the so-called Barenblatt problem [3], which describes
nonlinear thermal conduction from a point source. Since this problem has an analytical
solution in terms of a similarity variable [3, 36], it is a useful starting point in our study
for purposes of code validation. For all three numerical algorithms, the Barenblatt limit is
reached by simply disabling the update of fluxes in Eq. (11) so that hydrodynamic motion is
suspended, and we are essentially solving a nonlinear diffusion equation for the temperature
profile. The nonlinearity in the problem results from the assumed form of the coefficient
of thermal conductionκ. For this class of problems, results for two different temperature
dependences ofκ are presented:κ ∼ T5/2 and κ ∼ T13/2. (The first choice represents
an effort to mimic classical Spitzer–H¨arm electron thermal conduction in a plasma [41],
whereas the second corresponds to the dependence in a high-temperature fully ionized
plasma in which bremsstrahlung is the dominate radiative transfer mechanism [24].) The
power lawT13/2 gives rise to a solution with a much steeper thermal front thanT5/2, but
overall temporal convergence rates for both dependences are still second order.

In the next two test cases, hydrodynamic activity is enabled in our numerical schemes,
and our first objective is to examine convergence properties for nondiscontinuous initial
conditions. This is done by simulating the evolution of a smooth initial distribution of the
energy density up until a point where the solution profile has an opportunity to “shock.” The
motivation for considering this problem is not necessarily to model a particular physical
process, but to examine the accuracy and convergence behavior in the absence of nearly
discontinuous spatial profiles such as shock fronts. We find, though, that even when steep
gradients are not present, the convergence rate in time of the error is essentially first order
for all three schemes. This result is a consequence of the nature of the two-step Hancock
scheme used in our Godunov method and is discussed further in Section IVB.

For the third class of radiative hydrodynamic test problems, we follow the recent work of
Shestakov [23] and simulate point explosions with nonlinear heat conduction. Two differ-
ent problems, each with a different initial energy deposition, ambient density profile, and
coefficient of thermal conduction, are considered. These test cases are essentially a hybrid
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of the Barenblatt [3, 36] and Sedov [37, 38] blast-wave problems. Not surprisingly, the
convergence rates of all three coupled schemes for this class of problems are first order—as
they would be for any shock capturing method [5].

A. Nonlinear Thermal Conduction from a Point Source (the Barenblatt Problem)

Let us begin by comparing the accuracy of the three methods for a simplified physical
model in which hydrodynamics is absent from the description (v = 0). That is, we seek
solutions of the diffusion equation

∂T

∂t
= 1

r 2

∂

∂r

(
r 2χ

∂T

∂r

)
, (32)

where we have introduced the thermal diffusivityχ defined byχ = κ/(ρcV ); the density
ρ and the specific heatcV of the material are assumed fixed. For coefficients of thermal
conduction that obey a power-law dependence on temperature,κ = κ0Tb with b > 0, it
is well known that this equation possesses an analytical solution in terms of a similarity
variable. This solution is due to Barenblatt [36].

In the statement of the Barenblatt problem, we imagine that at timet = 0 an energy
E0 is released in a static material at the pointr = 0. (In our numerical code, we simulate
this situation by initially assigning the energy density in the first computational cell a
value ofE0/1V1; no “injection” of energy across a cell boundary is required.) Fort > 0, a
propagating thermal front results with the zero-flux boundary condition∂T/∂r |r=0 = 0. The
temperature profile at any given time is related toE0 by a statement of energy conservation:

Q ≡ E0

ρcV
=
∫ ∞

0
T4πr 2 dr = const. (33)

The constantQ has physical units of deg· cm3 and is a convenient parameter for formulating
the similarity solution.

For purpose of benchmarking our numerical results, it is helpful to write down the
analytical solution of the Barenblatt problem in spherical geometry. This can be summarized
as follows. Lettingr f denote the position of the thermal front, the temperature profile for
time t > 0 andr < r f is given by [3]

T = Tc

(
1− r 2

r 2
f

)1/b

, (34)

where

r f ≡ ξ0(χ0Qbt)1/(3b+2). (35)

Here,χ0 = κ0/(ρcV ) and the constantξ0 is a function ofb only:

ξ0 ≡
[

3b+ 2

2b−1bπb

]1/(3b+2)[
0(5/2+ 1/b)

0(1+ 1/b)0(3/2)

]b/(3b+2)

. (36)

In Eq. (36), the symbol0 denotes the gamma function. The temperature atr = 0 is

Tc ≡ Qξ3
0

r 3
f

[
bξ2

0

2(3b+ 2)

]1/b

. (37)
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FIG. 1. Nonlinear thermal conduction from a point source (the Barenblatt problem) att = 0.3 for E0 = 10
andκ = T5/2. The solid line is the analytical solution.

For r > r f , the temperature is given by its ambient value, which we take to be a positive
number close to zero (∼10−4). In the simulations, the temperature initially has this value
everywhere except in the first cell, where it is equal toE0/(ρcV1V1).

Figure 1 shows a comparison forb = 5/2 of Barenblatt’s solution with the temperature
profile obtained from the predictor–corrector Newton–Krylov code in which hydrodynamic
motion was disabled. The agreement for this method, as well as for the other two schemes
(not shown), is quite good. The initial energy in this case wasE0 = 10, and the data are pre-
sented att = 0.3 withκ0 = 1, cV = (γ − 1)−1, andρ = 1. Figure 2 shows the dependence
of theL2 solution error for the three different methods versus the target value for the front
CFL. In all three cases, a computational grid with 200 cells was used, and the guess for the
initial time step was very small:1t (0) = 10−28. (This guess was based on a rough estimate
for the characteristic diffusion time between the first and second cells:1r 2/χ ∼ 10−20.)
The “exact” solution was taken as the predictor–corrector Newton–Krylov method with a
front-CFL value of 10−3.

FIG. 2. Time-step convergence comparison using 200 computational cells for the Barenblatt problem shown
in Fig. 1. The absoluteL2 error in the temperature profile is plotted versus the target front-CFL number. The
nonlinear convergence tolerance for this series of runs was 10−7. For the linearized implicit data, a linear tolerance
of 10−9 was used.
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TABLE I

The Approximate Cost in CPU Seconds of the Three Methods

versus the Target Front-CFL Value for the Data in Fig. 2a

Method

Front-CFL value LI NK PCNK

0.5 6 34 62
0.25 10 43 96
0.1 20 70 180
0.05 33 120 327
0.025 59 227 591
0.01 129 501 1271
0.005 243 831 2331
0.0025 466 1669 4362

a The abbreviations LI, NK, and PCNK stand for linearized implicit, Newton–
Krylov, and predictor–corrector Newton–Krylov, respectively.

In this figure, it is clear that the predictor–corrector Newton–Krylov method, with its
second-order convergence rate, is far superior to the other two schemes, which only show
first-order convergence. For the same front-CFL target value, this scheme achieves errors
that are approximately three to five orders of magnitude smaller than the linearized implicit
approach. Furthermore, the algorithm is also significantly more efficient, as can be seen
by consulting Table I, which shows the cost in CPU seconds for the data in Fig. 2. For
example, at an absoluteL2 error of roughly 10−3, the predictor–corrector Newton–Krylov
code can be run with a target front-CFL value of 0.5 for a cost of 62 CPU seconds, whereas
the linearized implicit algorithm requires a front-CFL value about 100 times smaller, which
is approximately four times more expensive. This advantage, however, does not hold for
the first-order Newton–Krylov code. While roughly a factor of 5 more accurate for a fixed
front-CFL value, it is slightly less economical than the linearized implicit algorithm.

A second series of runs was performed usingκ(T) = T13/2. An exemplary solution profile
is shown in Fig. 3 fort = 1 andE0 = 10. Note that the thermal front now has a much steeper

FIG. 3. Nonlinear thermal conduction from a point source att = 1 forE0 = 10 andκ = T13/2. Note the steeper
thermal front in this figure compared to that in Fig. 1.
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FIG. 4. Time-step convergence comparison using 200 computational cells for the Barenblatt problem shown
in Fig. 3. The nonlinear convergence tolerance for this series of runs was 10−7. For the linearized implicit data, a
linear tolerance of 10−9 was used.

appearance than in Fig. 1. Here, the characteristic diffusion time was1r 2/χ ∼ 4× 10−46,
and consequently, a rather conservative value of 10−54 was used for the initial time step,
1t (0). A convergence plot is shown in Fig. 4 for the three different numerical schemes,
and a comparison of the CPU cost for these data is given in Table II. The “exact” solution
was defined as the predictor–corrector Newton–Krylov method with a target front-CFL
value of 10−3. The trends here are similar to the previous Barenblatt problem. Despite the
presence of a very steep solution profile, the predictor–corrector Newton–Krylov code still
achieves second-order convergence. Once again, for an absoluteL2 error of roughly 10−3,
this scheme is about four times more efficient than the linearized implicit one.

We should point out that the reason a second-order, temporal convergence rate is seen in
these problems is that both the “exact” and computed temperature profiles were determined
at the same set of discrete points on the fixed numerical grid. The “exact” solutions were
obtained by fine temporal—but not spatial—refinement and thus possess thermal fronts

TABLE II

The Approximate Cost in CPU Seconds of the Three Methods versus

the Target Front-CFL Value for the Data in Fig. 4

Method

Front-CFL value LI NK PCNK

0.5 10 51 —a

0.25 16 66 163
0.1 32 118 303
0.05 53 187 513
0.025 91 349 954
0.01 194 695 2068
0.005 360 1365 3620
0.0025 678 2402 7195

a Solution did not converge to specified tolerance within 15 Newton iterations
during at least one time step.
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with more or less the same “sharpness” as in the computed solutions. It is important to note,
though, that these thermal fronts are not true discontinuities, but rather are composed of a
sequence of steep line segments joined together and extending over several grid points. If an
exact (and truly discontinuous) analytical solution to the Barenblatt problem were used to
compute the error terms, the convergence rate would almost certainly not be second order;
it would likely be much closer to zeroth order [5].

We should also comment here about an issue concerning the Crank–Nicolson structure of
the corrector stage of the Newton–Krylov algorithm. For linear (κ = const) heat conduction
problems, it is well known [6, 13] that while the Crank–Nicolson method is second-order
accurate in time and mathematically stable, it gives completely wrong answers when the size
of the time step is relatively large. In the present context of nonlinear thermal conduction,
however, the use of a Crank–Nicolson formulation (with a time step based on the front-CFL
method) does not appear to lead to any loss of fidelity in our numerical solutions, even though
the time step sizes used in our calculations are often orders of magnitude larger than that
required for linear stability (and accuracy). This observation is not too surprising, though,
in light of the fact that in the nonlinear case, the coefficient of thermal conductionκ(T) is
large behind the thermal front (where the temperature is large, but the gradient is small),
and small near its “foot” (the only place where the temperature gradient is appreciable).
Such an arrangement tends to reduce the magnitude of the heat flux term,−κ(∂T/∂r ), in
the energy equation [Eq. (6)], and thus permits high-fidelity solutions for somewhat larger
time step sizes than could otherwise be used in a linear conduction problem.

B. The “Smooth” Problem

In this and the following section, we turn to more complicated classes of problems in
which hydrodynamic motion is allowed to participate in the dynamics. Here, however, we
first limit our attention to so-called “smooth” flows in which nearly discontinuous features
such as steep thermal fronts and shock waves are absent from the numerical solution. The
simulation of smooth flows is performed by following the evolution of the nonlinear waves
that result from an initially nondiscontinuous energy density profile up until a point where
the solution steepens appreciably, or becomes “shocked.” The purpose of this section is
to assess the convergence rate of our schemes under such circumstances. The boundary
conditions for the hydrodynamic variables in this section are “reflective” and “outflow”
conditions [13] at the left and right ends, respectively, of the computational domain. As in
the previous section, zero-heat-flux boundary conditions are used for the temperature.

Our approach is to adopt a Gaussian profile for the initial energy-density profile. That is,
we take

E(r )|t=0 =
E0 exp

(− r 2
/

c2
0

)
(c0
√

π)3
, (38)

wherec0 is a positive constant; for our purposes, we choosec0 = 1/4. Note that the limit
c0→ 0 gives a delta function at the origin, and the normalization factor is such that∫ ∞

0
E 4πr 2 dr = E0. (39)

In order to specify the energy-density profile in the numerical codes initially, though, we
need to compute the discrete values ofE in each cell. This is done by integrating Eq. (38)
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over the j th cell fromr j−1/2 to r j+1/2. The result is

Ej =
E0
[
erf
(
r j+1/2

/
c0
)− erf

(
r j−1/2

/
c0
)]− 2πc2

0

[
r j+1/2E

(
r j+1/2

)− r j−1/2E
(
r j−1/2

)]
1Vj

,

(40)

where the symbol “erf” denotes the standard error function.
We now follow the evolution of this smooth profile in time, being careful to stop the sim-

ulation at a point well before the solution becomes essentially discontinuous. We choose
E0 = 100 andρ(r ) = 1/r for the initial energy and density, respectively, and set the coef-
ficient of thermal conduction toκ(T) = T5/2. The guess for the initial time step here was
1t (0) = 10−10. The resulting simulated profiles of density, pressure, velocity, and temper-
ature are shown in Fig. 5 att = 0.01.

Figure 6 presents a comparison of the convergence properties of the three methods as
applied to this coupled problem. The “exact” solution was defined to be the predictor–
corrector Newton–Krylov result with a target front-CFL value of 10−4. Note that while
the convergence rate of all three schemes is nominally first order, the predictor–corrector
Newton–Krylov method still has an absoluteL2 error in the temperature profile that is always
two to three orders of magnitude smaller than that obtained with the linearized implicit
algorithm for a fixed front-CFL value. Compared to the Barenblatt problem, though, the
gain in efficiency of this method has decreased somewhat, as can be seen from the CPU costs
displayed in Table III for the data in Fig. 6. For the few data points that permit comparison

FIG. 5. The profiles of (a) density, (b) pressure, (c) velocity, and (d) temperature att = 0.01 for an initially
Gaussian energy-density profile withE0 = 100, κ = T5/2, andρ(r ) = 1/r . The solution has not yet “shocked.”
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FIG. 6. Time-step convergence comparison using 200 computational cells for the “smooth” problem shown
in Fig. 5. The nonlinear convergence tolerance for this series of runs was 10−8. For the linearized implicit data, a
linear tolerance of 10−8 was used.

at the same error level, we see that the predictor–corrector Newton–Krylov code provides
about a factor of 2 savings over the linearized implicit algorithm. Compared to this latter
method, the other Newton–Krylov scheme also offers consistently more accurate solutions,
but is not as economical.

We should remark on an issue concerning the first-order convergence rate of the predictor–
corrector Newton–Krylov scheme seen in this example. Since nearly discontinuous features
such as steep thermal gradients and shock fronts are absent from the numerical solution,
one might expect this method to achieve approximately second-order convergence, as in the
Barenblatt problems. The resolution of this apparent paradox has to do with the particular
Godunov scheme employed here for integrating the hydrodynamic equation; it is almost
certainly not the result of any coupling issues between the hydrodynamic and conduction
stages of the solution methodology. The two-step Hancock procedure that we use (see
Appendix) is only second-order accurate in space and time for afixedCourant number,
v1t/1r [33]. In Fig. 6, though, the grid spacing1r is constant, and convergence in1t
alone for Hancock’s method is only first order. Thus, given the way in which we have
chosen to construct convergence plots, we can expect to see first-order behavior for any

TABLE III

The Approximate Cost in CPU Seconds of the Three Methods versus

the Target Front-CFL Value for the Data in Fig. 6

Method

Front-CFL value LI NK PCNK

0.5 2 10 21
0.25 2 11 23
0.1 3 13 31
0.05 4 18 44
0.025 6 26 70
0.01 13 49 143
0.005 22 90 243
0.0025 41 161 441
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coupled, radiative hydrodynamic problem to which our numerical schemes are applied.
This of course will include the point explosions discussed in the next section.

C. Point Explosions

In this section, we study the performance of the three numerical schemes for modeling
one-dimensional point explosions with nonlinear heat conduction. An explosion is charac-
terized by the release of a large amount of energy in a small region of space, and this is
simulated in our dynamical codes by initializing the energy densityE with a discontinuous
profile. That is, at timet = 0, the value ofE is set to a small value (10−3) in all com-
putational cells except the first one, where it is assigned a much larger value (∼10–1000,
typically). Note that this corresponds to simply letting the parameterc0 in the previous
section approach zero. The solution profiles are then allowed to evolve in time according
to Eqs. (4)–(6). In general, both a thermal front and a shock wave appear in the numerical
solution. This class of problem was recently studied by Shestakov [23] within the frame-
work of a Lagrangian code [39]. The hydrodynamic boundary conditions used here are the
same as in the previous section.

The first problem that we consider is a point explosion into a cold quiescent fluid with
ambient densityρ = 1. The initial energyE0 = 20 is “released” in the first computational
cell att = 0. The coefficient of thermal conduction is assumed to be a function of temper-
ature only withκ(T) = T5/2. Profiles of fluid density, pressure, velocity, and temperature
for this case are shown in Fig. 7 at timet = 0.05. In this simulation, a shock wave is clearly
visible atr ∼ 0.93. Figure 8 shows a time-step convergence comparison for the solution
to this problem obtained with the three numerical schemes. For each case, a computational
grid with 100 cells was used and the guess for the initial time step was1t (0) = 10−12. The
“exact” solution was taken as the predictor–corrector Newton–Krylov method with a target
front-CFL value of 10−4.

Not surprisingly, the predictor–corrector Newton–Krylov method gives results that are
consistently more accurate (by a factor of approximately 10–15) for the same target front-
CFL value than both the Newton–Krylov and the linearized–implicit schemes, with the latter
being the least accurate. Compared to previous examples, though, the greater accuracy here
has become more costly, as can be seen in Table IV. Now, the predictor–corrector Newton–
Krylov method is only slightly more efficient than the other two. For example, an overall
L2 error in the temperature profile of 1.5× 10−3 or less requires at least 58 CPU seconds
with the predictor–corrector Newton–Krylov code, whereas an equally reliable answer can
be obtained by expending just 20% more computational effort (69 CPU seconds), with
the linearized implicit scheme. The comparisons are much less favorable for the Newton–
Krylov code without the predictor–corrector architecture.

The next simulation that we discuss is that of a point explosion with a greater nonlinear
temperature dependence for the coefficient of thermal conduction. In this case, the density
and temperature exponents forκ area = −2 andb = 13/2, respectively. The ambient fluid
density has a spatial dependence given byρ(r ) = r−2.111. These particular parameters were
chosen in an effort to compare results with those presented previously by Shestakov [23],
as well as with solutions given by Reinicke and Meyer-ter-Vehn [24]. It is interesting to
note that this particular example belongs to a special class of similarity solutions that exists
in radiation hydrodynamics for certain forms of the coefficient of thermal conduction and
certain spatial profiles of the ambient density [24]. For this class of problems, the shock
and thermal front both evolve with the same power-law dependence in time so that if the
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FIG. 7. Simulation of a weak point explosion with an initial energy ofE0 = 20. Profiles of (a) density, (b)
pressure, (c) velocity, and (d) temperature are shown att = 0.05. The coefficient of thermal conduction here is
κ = T5/2, andρ = 1 initially.

initial energy of the explosion is large enough, a thermal front will always precede the
hydrodynamic shock wave.

An example of such a “strong” point explosion is depicted in Fig. 9 for an initial energy
E0 = 235. Simulated profiles of fluid density, pressure, velocity, and temperature are shown

FIG. 8. Time-step convergence comparison using 100 computational cells for the weak point explosion shown
in Fig. 7. The nonlinear convergence tolerance for this series of runs was 10−8. For the linearized implicit data, a
linear tolerance of 10−8 was used.
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TABLE IV

The Approximate Cost in CPU Seconds of the Three Methods versus

the Target Front-CFL Value for the Data in Fig. 8

Method

Front-CFL value LI NK PCNK

0.5 2 12 27
0.25 3 14 35
0.1 6 23 58
0.05 9 34 106
0.025 16 66 162
0.01 37 138 372
0.005 69 274 625
0.0025 123 453 1281

FIG. 9. Simulation of a strong point explosion with an initial energy ofE0 = 235. Profiles of (a) density,
(b) pressure, (c) velocity, and (d) temperature are shown att = 0.05145. The coefficient of thermal conduction
here isκ = ρ−2T13/2, andρ(r ) = r −2.111 initially. A thermal front atr ∼ 0.9 is visible ahead of a shock wave at
r ∼ 0.45. The dotted lines denote the solution in the absence of radiative conduction (i.e, the pure hydrodynamic
limit known as the “Sedov” solution [37]).
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FIG. 10. Time-step convergence comparison using 400 computational cells for the strong point explosion
shown in Fig. 9. The nonlinear convergence tolerance for this series of runs was 10−8. For the linearized implicit
data, a linear tolerance of 10−9 was used.

at timet = 0.05145. The dotted lines in this figure denote the pure hydrodynamic solution
[37]. Note the presence of a thermal front in Fig. 9 atr ∼ 0.9, which is ahead of a shock
located atr ∼ 0.45. The guess for the initial time step here was1t (0) = 10−12.

In Fig. 10, we show the results of a time-step convergence comparison using the three
different numerical schemes for this example. A computational grid with 400 cells was used
throughout because coarser grids for this problem gave solutions that were not well resolved
near the origin. Once again, we have plotted the absoluteL2 error in the temperature profile
versus the target front-CFL value. Since the computations were more intensive here than in
the other point explosion, we chose the predictor–corrector Newton–Krylov method with
a slightly larger front-CFL target value (10−3) as the “exact” solution for this problem.
Generally speaking, the conclusions regarding accuracy at a fixed front-CFL value here are
the same as for the previous two examples, but now the separation between convergence lines
has been reduced somewhat. The predictor–corrector Newton–Krylov scheme still yields

TABLE V

The Approximate Cost in CPU Seconds of the Three Methods versus

the Target Front-CFL Value for the Data in Fig. 10

Method

Front-CFL value LI NK PCNK

0.25 19 186 —a

0.10 35 283 848
0.05 60 450 1359
0.025 108 726 2208
0.01 245 1477 4517
0.005 445 2556 7801
0.0025 821 4292 13649

a Solution did not converge to specified tolerance within 15 Newton iterations
during at least one time step.
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the most accurate solution, but at a significantly greater comparative cost than before, as
shown in Table V. AnL2 error of approximately 3.5× 10−2 in the temperature profile,
for example, now requires 372 CPU seconds, whereas an equally accurate solution can be
obtained for only 123 CPU seconds using the linearized implicit method.

V. SUMMARY AND FUTURE WORK

In this paper, we have studied the performance of three numerical methods for integrating
the equations of radiation hydrodynamics in the equilibrium diffusion limit and the low-
energy-density regime. Accuracy and efficiency comparisons were made by considering
several, one-dimensional, spherically symmetric test problems. For each of the methods,
an “operator split” approach was used in which the problem was separated into two parts: a
purely hydrodynamic piece followed by a conduction module. All methods used the same
technique to integrate the Euler equations in the hydrodynamic stage (a high-resolution
Godunov scheme [4–7]), but differed in the way they incorporated the contributions of
nonlinear thermal conduction into the problem.

In the first approach, a linearized implicit method was used that simplifies nonlinear terms
by evaluating them with old time-level data. The resulting system of linear equations was
then solved with a linear iterative technique. Such a method lacks (nonlinear) numerical
consistency [5, 14] since it makes no attempt to monitor or converge nonlinearities within
a computational time step. In the field of radiation hydrodynamics, however, this is a com-
mon practice [1, 22]. The performance of this linear scheme was compared with that of two
consistent, nonlinear iterative solvers based on Jacobian-free Newton–Krylov techniques
[17, 18], which do converge nonlinear terms within a computational time step. These tech-
niques offer a significant advantage over the standard Newton’s method [15] in that they
do not require the formation and inversion of a Jacobian matrix, yet still achieve desirable
nonlinear-convergence behavior. The two Newton–Krylov codes used in this investigation
differed in their order of accuracy in time; one was strictly first-order accurate, while the
other sought to achieve second-order accuracy with a predictor–corrector architecture.

Not surprisingly, the Newton–Krylov algorithms always gave more accurate results.
This finding is consistent with studies of radiation diffusion without hydrodynamics [16],
although for that class of problems, even more impressive gains in accuracy were made by
using Newton–Krylov methods. In most cases studied here, the same level of accuracy was
preserved by taking time steps in the predictor–corrector Newton–Krylov scheme that were
at least an order of magnitude larger than in the linearized implicit approach. This is true for
pure diffusion (the Barenblatt limit), and in the coupled, radiative hydrodynamic problems.
Because our hydrodynamic scheme is only first-order accurate in time, though, the overall
convergence rate for coupled problems was also limited to first order, even in the absence of
nearly discontinuous profiles such as shocks in the solution. For the Barenblatt problems,
the predictor–corrector Newton–Krylov method achieved a second-order convergence rate,
even for a problem with a steep thermal gradient.

We should mention that the selection of the nonlinear and linear tolerances was an im-
portant consideration in this study. When this work was first initiated, a value of 10−5

was used for both the nonlinear convergence tolerance in the Newton–Krylov schemes
and the tolerance of the linear iterative solver in the linearized implicit approach. For
the types of problems and range of front-CFL values considered, though, this value was not
always sufficient and needed to be reduced to 10−9–10−7 to provide reasonable
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convergence behavior, particularly below a target front-CFL value of 10−2. Newton–Krylov
runs performed for the strong point explosion at a tolerance of 10−5, for example, often had
an error that generally diminished as the target front-CFL value was lowered, but some-
times “stalled out” or contained local sections that were not monotonically decreasing.
This behavior was witnessed for several problems in which the linearized implicit method
was used as well. The explanation for this behavior is likely the accumulation of round-off
error over the hundreds of thousands of time steps that were sometimes required for these
calculations.

Perhaps the most salient issue of this study is that of Newton–Krylov efficiency for
radiative hydrodynamic calculations. Quite frankly, the results for the coupled problems are
somewhat disappointing in comparison to earlier applications of Newton–Krylov algorithms
[16, 30], which consistently demonstrated the superiority and CPU-cost efficiency of these
methods over standard linearized techniques. While the predictor–corrector Newton–Krylov
code used here proved much more efficient for the Barenblatt problem and somewhat
more efficient for the weak point explosion, this advantage waned for the strong point
explosion. Our assessment of this finding is that it is likely a result of the time splitting of
the hydrodynamic and diffusion integrators in our solution methodology, and the application
of a nonlinear iterative scheme to only the latter.

We wish to point out that this paper represents a first attempt to examine the utility
of Newton–Krylov methods for radiation hydrodynamics. In the future, our intent is to
abandon the splitting of hydrodynamic and diffusion operators altogether and study the
performance of the Newton–Krylov technique as applied to the full set of coupled, radiative
hydrodynamic equations. In addition, it will be desirable to model the dynamics of systems
in the high energy-density regime, where the effects of radiation pressure and energy density
are not neglected. Multidimensions and nonideal equations of state are other aspects of more
realistic simulations that we also wish to consider. It is here that we expect to see the true
efficacy of Newton–Krylov methods for accurate and efficient numerical calculations of
radiative hydrodynamic problems.

APPENDIX: PRIMITIVE-VARIABLE RIEMANN SOLVER

In this appendix, we outline the details of the Riemann solver used in the Godunov
method described in Section III. The principal task is to approximate time-centered values
of F andG in Eq. (11) at the cell interfaces of our one-dimensional spherical grid. Our
approach differs somewhat from the conventional formulation of Godunov’s method in
that we choose to work in terms of an augmented primitive-variable representation [40].
Defining the vectorW ≡ (ρ, v, ρε, p)T , where the superscriptT denotes the transpose, we
follow a two-step Hancock procedure discussed by Huynh in Ref. [33]. For convenience,
we shall sometimes drop subscripts and superscripts for ease of notation when it causes no
confusion.

In terms of primitive variables, Eq. (7) can be rewritten as

∂W
∂t
+ A p

∂W
∂r
+ K = 0, (41)
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whereK ≡ [ρv, 0, v(ρε + p), γ pv]T , and the matrixAp is given by

Ap ≡


v ρ 0 0
0 v 1/ρ 0
0 ρε + p v 0

0 γ p 0 v

 . (42)

Note that the third equation is superfluous with the fouth in this system. Since the specific
internal energy and the pressure are uniquely related by the relationρε = p/(γ − 1) for
ideal gases, it is not necessary to have two separate equations for advancingρε and p in
time. Nevertheless, we choose to purposely incorporate this redundancy in the governing
equations so as to avoid additional evaluations of the equation of state.

The next step in Hancock’s method is to determine the spatial gradientsSj of the primitive
variables in each cell. These are approximated by

Sn
j ≈

Wn
j+1−Wn

j−1

21r
, (43)

which are usually limited to ensure locally monotonic profiles [42]. The spatial gradients
are then used to find time-centered expressions for the primitive variables at the cell edges
using a Taylor series expansion in both space and time. Keeping only first-order terms, we
have

Wn+1/2
j+1/2,L ≈ Wn

j +
1r

2
Sn

j +
1t

2

∂Wn
j

∂t
, (44)

Wn+1/2
j+1/2,R ≈ Wn

j+1−
1r

2
Sn

j+1+
1t

2

∂Wn
j+1

∂t
. (45)

SubscriptsL andR in Eqs. (44) and (45) denote “left” and “right” states, respectively. The
time derivatives on the right hand sides of these equations are determined from the Euler
equations expressed in primitive variable form. Explicitly, the individual components of
∂W/∂t are

∂ρ

∂t
= − ∂

∂V
(Aρv), (46)

∂v

∂t
= −v

∂v

∂r
− 1

ρ

∂p

∂r
, (47)

∂ρε

∂t
= − ∂

∂V
(Aρεv)− p

∂ Av

∂V
, (48)

∂p

∂t
= − ∂

∂V
(Apv)− (γ − 1)p

∂ Av

∂V
. (49)

In this study, we choose to limit our attention to piecewise constant data only, such that
Sj = 0 for all j .

On either side of each cell interface, we now have time-centered expressions for the
primitive variables. The resulting sequence of Riemann problems is then solved to give

Wn+1/2
j+1/2 = R

(
Wn+1/2

j+1/2,L , Wn+1/2
j+1/2,R

)
, (50)
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whereR stands for “Riemann solver.” Finally, these quantities are used to compute the
time-centered vectorsFn+1/2

j±1/2 ≈ F(Wn+1/2
j±1/2) andGn+1/2

j±1/2 ≈ G(Wn+1/2
j±1/2), and update the Euler

equations from time leveln to n+ 1 according to Eq. (11).
The one-dimensional Riemann problem, represented by the symbolR in Eq. (50), de-

scribes the evolution of a planar discontinuity separating two uniform fluid states; it is the
key ingredient in Godunov’s method. Although there is no closed-form solution of the Rie-
mann problem for the Euler equations (even for ideal equations of state), an iterative scheme
can be employed to compute the exact solution numerically to an arbitrary level of precision
[43]. In a practical computation, though, it may be necessary to solve the Riemann problem
billions of times [7], which can be a demanding and undesirable task. Our approach here
is not to seek theexactsolution of Eq. (50), but rather to find a good approximation to it
using a less expensive Riemann solver.

Over the past two decades, many clever and sophisticated solution methodologies have
been devised to find approximate solutions to the Riemann problem. One such approach is
Roe’s method [27], which we use exclusively in this study. Roe’s scheme is probably the
best known of all approximate Riemann solvers and works well even for relatively strong
shocks [7]. Since it was first introduced in 1981, various refinements have been made,
but here we limit our attention to a modified version of Roe’s original conserved-variable
method. The principal difference in our implementation is that we formulate the predictor
stage of our solver in terms of primitive variables instead of conserved ones. Because our
approach may be somewhat unfamiliar to the reader, details of the scheme are provided
below.

In discussing the modified version of Roe’s solver used here, it is convenient to first intro-
duce shorthand notation for the left and right states that appear in Eq. (50). We temporarily
drop the subscriptj + 1/2 and the superscriptn+ 1/2 and simply write

WL ≡


ρL

vL

(ρε)L

pL

 , WR ≡


ρR

vR

(ρε)R

pR

 , (51)

for the time-centered vectors of primitive variables on either side of each cell interface. The
so-called “Roe-average” of these states [27], which we denote by a tilde, is defined by

W̃ ≡
√

ρL WL +√ρR WR√
ρL +√ρR

. (52)

This averaging procedure is a central aspect of Roe’s Riemann solver. Essentially, the
primitive-variable formulation of Roe’s method requires that we replace the variable matrix
Ap in Eq. (42) with a constant matrix,to wit the Roe-average ofAp. Specifically, the Roe-
averaged matrix̃Ap is given by

Ãp ≡


ṽ p̃ 0 0

0 ṽ ρ̃−1 0

0 ρ̃ε + p̃ ṽ 0

0 γ p̃ 0 ṽ

 , (53)
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which has eigenvalues

λ̃1 ≡ ṽ − c̃, λ̃2 = λ̃3 ≡ ṽ, λ̃4 ≡ ṽ + c̃, (54)

and right eigenvectors

R(1) ≡


1
−c̃/ρ̃

(ρ̃ε + p̃)/ρ̃

c̃2

 , R(2) ≡


1
0
0
0

 , R(3) ≡


0
0
1
0

 , R(4) ≡


1

c̃/ρ̃

(ρ̃ε + p̃)/ρ̃

c̃2

 . (55)

Here, the symbol̃c represents the sound speed for the Roe-averaged state:c̃ ≡ √γ p̃/ρ̃.
The final step is to express the difference between the left and right states of primitive

variables as a superposition of right eigenvectors,

1W ≡WR−WL =
4∑

i=1

αi R(i ), (56)

where the coefficients (right eigenvector projections)αi are given by

α1 ≡ 1

2 c̃2
(1p− ρ̃ c̃1v), (57)

α2 ≡ 1ρ −1p/c̃2, (58)

α3 ≡ 1ρε − 1

ρ̃ c̃2
[1p(ρ̃ε + p̃)], (59)

α4 ≡ 1

2 c̃2
(1p+ ρ̃ c̃1v). (60)

With these data, the time-centered vectors of primitive variables at each cell interface can
be written as

Wn+1/2
j+1/2 =

1

2
(WL +WR)− 1

2

4∑
i=1

sign(λ̃i ) αi R(i ), (61)

which completes the Riemann solution. In practice, the wave speeds in the solution are
bounded by comparing̃λ1 with vL − cL , λ̃2 with vL andvR, andλ̃4 with vR+ cR, and always
selecting the maximum. The symbolscL andcR denote the sound speeds in the left and
right states, respectively:cL ≡

√
γ pL/ρL andcR ≡

√
γ pR/ρR. We should also remark that

the procedure outlined above can be described as an “all-shock” method because it allows
for rarefactive shocks with a concomitant violation of the second law of thermodynamics.
Various “entropy fixes” have been devised for Roe’s Riemann solver, but we shall not
attempt to describe them here since they are not required for the class of test problems
considered in this investigation. For further reading on this subject, the reader is referred to
Refs. [5, 44].
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