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We compare the accuracy of three, mixed explicit—implicit schemes for simulating
nonrelativistic, radiative hydrodynamic phenomenain the equilibrium diffusion limit.
Only the “low-energy-density” regime is considered, where itis possible to ignore the
effects of radiation pressure and energy density in comparison to the fluid pressure
and energy density. The governing equations are then those of compressible Eulerian
hydrodynamics with a nonlinear, radiative heat-transfer term appearing in the energy
equation. All three finite-volume methods in this study utilize an explicit Godunov
method with an approximate Riemann solver to integrate the Euler equations, but
differ in their iterative treatment of the radiation diffusion term, which is handled
in an “operator-split” fashion. In the first method, diffusive effects are computed
with a linearized implicit technique that does not converge nonlinearities within a
computational time step. In the other two methods, a Jacobian-free Newton—Krylov
procedure is used to converge the nonlinearities, and improved accuracy (but not
always greater efficiency) is achieved over the more traditional linearized—implicit
approach. The two Newton—Krylov methods differ in their order of accuracy in time;
one is strictly first-order accurate, while the other attempts to achieve second-order
accuracy by making use of a predictor—corrector architecture. Several examples
are considered to demonstrate the convergence properties of the three schemes, but
attention is limited to spherically symmetric problems such as the one-dimensional
point explosion. © 2001 Academic Press
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I. INTRODUCTION

The transport of radiation and its interaction with matter play an important role in astt
physics, inertial confinement fusion, and other high-temperature hydrodynamic syste
The processes of emission, absorption, and scattering of radiation result in an exchan
momentum and energy between the radiation field and matter that can greatly affect f
motion [1, 2]. Typically, radiative phenomena occur on time scales that differ by ma
orders of magnitude from those characterizing hydrodynamic activity [3]. As a result, t
accurate and efficient modeling of radiation hydrodynamics with high-resolution numeri
codes presents significant computational challenges.

Although high-resolution methods for simulating pure hydrodynamic flows are we
established [4—7], their extension to coupled radiative regimes has only recently begun (
see Dai and Woodward [8, 9], Lowré al.[10], Balsara[11, 12], and references therein). In
practice, both explicit and implicit methods are currently used for radiative hydrodynan
calculations. While explicit methods are usually simple to implement, associated tin
step sizes often need to be restrictively small to satisfy stability conditions [13]. Implic
schemes allow much larger time-step sizes to be taken [14], but strong nonlinearities in
radiation terms are difficult to treat; frequently, a linearized solution is sought, which limi
the accuracy of the scheme, or a nonlinear iteration procedure is employed. One of the 1
popular nonlinear iterative schemes is Newton’s method [15], which in many circumstan
allows an accurate treatment of nonlinearities. Standard Newton methods have a signifi
disadvantage, though, in that they require the formation and inversion of a Jacobian ma
which is expensive in terms of CPU cost when a large system of equations is involved [

Newton—Krylov schemes [17, 18], on the other hand, achieve Newton-like, nonline
convergence properties without this expense. The method is a unique combination o
outer Newton-based iteration and an inner conjugate-gradient-like (Krylov) iteration. T
effects of the Jacobian are probed only through approximate matrix—vector products requ
in the Krylov iteration. Previously, Knolét al. [16] demonstrated the benefit of using
Jacobian-free Newton—Krylov methods to converge nonlinearities within a time step
a class of radiation diffusion problems. Here, we explore the consequences of incluc
hydrodynamics in the description.

Toward this end, we present an accuracy comparison in time of three, mixed explic
implicit algorithms for modeling radiative hydrodynamic phenomena. All three metho
are finite-volume based, and separate the effects of hydrodynamics and radiation tran:
into two stages. The first stage, which is common to all three schemes, employs an exg
Godunov method [5, 7, 19] with a approximate Riemann solver to integrate the invisc
hydrodynamic equations in an Eulerian coordinate frame. The influence of nonlinear,
diative thermal conduction is then accounted for in the second stage, which differs fr
scheme to scheme. In one method, linear approximations of nonlinear terms are used,
the resulting system of implicit equations being solved by a linear iterative solver. Of cour
this “linearized implicit” approach does not converge nonlinearities within a computatior
time step, and hence lacks (nonlinear) numerical consistency [5, 14]. In the other two
gorithms, a nonlinear, iterative Newton—Krylov solver is used to converge nonlinearities
is shown that much larger time steps can be taken for the same level of accuracy wher
nonlinear residual is monitored and converged.

A related approach that also combines an explicit Godunov scheme with an impli
iterative method to solve coupled sets of radiative hydrodynamic equations was propose
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Dai and Woodward in Ref. [8]. In that study, as here, attention was limited to the equilibrit
diffusion limit [2, 20], and the effects of radiative thermal conduction were temporal
“split” from the hydrodynamics. We should point out, however, that the scope of the pres
investigation differs from that of Ref. [8] in at least two significant ways. First, we are on
considering the “low-energy-density” regime, in which the contribution of radiation presst
and energy density can be neglected in comparison to the total (fluid) pressure and en
density. Dai and Woodward, on the other hand, retained these contributions by develo
a specialized Riemann solver to explicitly account for radiative terms in the conservat
laws. Second, in order to converge nonlinearities in the radiation diffusion equation, Dai :
Woodward developed an iterative procedure based soldipear solvers such as Gauss—
Seidel [15] and multigrid [21]. In contrast, the focus in this paper is on examining t
utility of Newton-based iterative techniques for radiative hydrodynamic calculations ar
in particular, how these techniques perform in comparison to linear methodologies. (The
of linear iterative solvers is currently a common practice in many radiation hydrodynam
codes; see Baldwiet al. [22] for a comprehensive review of five of the more populat
schemes used in this context.)

The organization of this paper is as follows. In Section Il, the governing equatio
of radiation hydrodynamics are written down in the equilibrium diffusion limit and the
specialized to the one-dimensional, low-energy-density regime. In Section I, we outl
the salient aspects of the three numerical schemes considered here: (i) the linearized im
approach; (ii) a one-pass, iterative Newton—Krylov scheme for converging the nonlineari
within the radiation diffusion equation; and (iii) a two-step Newton—Krylov procedur
with a predictor—corrector architecture that attempts to achieve second-order accurac
time. Numerical results for several spherically symmetric test problems are presente
Section V. Finally, in Section V, the conclusions of the paper are given, as well as
prospectus of future work.

Il. PHYSICAL MODEL

For “optically thick” materials, gradients of the radiation density do not change app!
ciably over a distance of the order of the radiation mean-free path [3]. This is known
the “diffusion approximation.” In this limit, and in the case that local thermodynamic eqt
librium exists between the radiation field and the fluid, the nonrelativistic equations
radiation hydrodynamics can be written as [2, 20]

ap _

5+v-(pv)_o, 1)
)
5(pV)+V~(pW)+V(p+ p,) =0, 2

0
(oo + pVZ/2+E,) + V- [(pe + pV?/2+ p+ p, + EOV] = V- «VT), (3)

wherep, p, Vv, ¢, andT are the mass density, pressure, flow velocity, internal energy p
unit mass, and temperature of the fluid, respectively. Heis,the coefficient of thermal

conduction, which may characterize material and/or radiative properties, and in gener
a nonlinear function op andT. The above description applies to “gray” materials suct
that the opacityw « (pk)~! is independent of the frequency of photons in the radiatio



102 BATES ET AL.

field. In addition, we have that, = E, /3 = %oT“/c, wherep, is the radiation pressure,
E, is the radiant energy density,is the Stephan—Boltzmann constant, and the speed
of light. In the low-energy-density regime, andE, are neglected in comparison peand
pe + pv?/2, respectively. Equations (1)—(3) constitute a closed system if an equation
state,p = p(p, T), is specified. Throughout this paper, we assume an ideal gas equatior
state,p = RoT = (y — D) pe, whereR is the gas constant per unit mass anid the ratio
of specific heats. We also make the somewhat artificial choiee5/4 in order to be able
to compare our results with those in Refs. [23, 24].

In the case of spherical symmetry, such that the independent variables are the re
coordinate and the timd only, Eqgs. (1)—(3) in the low-energy-density regime reduce to

p 1
i 4
n +r28r( 2pv) = 4)
el 2, ap
+ — =0, 5
8pv+r23r( e ar ®)
dE 19 19 T
=2 Ly =2 (r2 6
ot Trear’ VETP =5y (r 8r) ©)

where E = pe + pv?/2 is the total energy density of the fluid. For the purposes of thi
study, we assume thatcan be written as a power law in density and temperatuee,
kop®TP, whereko, a, andb are constants. This choice corresponds to an opacity

p~ @D /Tb which is equivalent to the functional form assumed by Marshak in Ref. [25
The remainder of this paper is concerned with the accurate numerical solution of Egs. |
(6) for different values of andb, and for different initial conditions. Let us now outline
the three numerical schemes considered for this purpose.

Ill. TIME-INTEGRATION METHODS

For allthree methods, the solution strategy can be loosely described as “operator splitti
whichisacommon approach in numerical codes used to model multiple physical phenorr
[1]. For our purposes here, the essential ideal is to separate hydrodynamic and radi:
processes into two stages during each time step. In the first stage, the hydrodynamic (E
equations are solved, and in the second stage, the total energy density is updated to ac
for the effects of radiation transport. The three algorithms are distinguished by the way
which this second stage is carried out, and in particular, whether or not nonlinearities in
radiative conduction term are converged.

Specifically, the splitting procedure can be accomplished by writing Egs. (4)—(6) a:
system of hyperbolic conservation laws [26],

3 (AF)
RS :o, 7
at = v + o ar 0

plus a diffusion equation

oE a aT
ot av( ar>’ ®
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where
o pv 0
U= |pv|, FU) = pv2 , GU) = |P]|. 9)
E v(E + p) 0

Here,V = 4xr3/3 is the generalized volume coordinate in one-dimensional spherical ¢
ometry, with A = dV/dr = 4nr? the associated cross-sectional area. Note that the flt
vectorF differs from the usual planar case in that a pressure term is absent from the sec
entry. The solution algorithm proceeds by consecutively solving Egs. (7) and (8) at e
time step. Initially, new values of the mass, momentum, and total energy densities are fc
from the solution of the Euler equations [Eq. (7)]. The total energy density obtained in tl
step, though, is only an intermediate result, which is then updated according to Eq.
Note that the value oE determined in the hydrodynamic stage serves as the initial valt
for integrating Eq. (8).

All three numerical approaches considered in this paper utilize a Godunov method wi
modified version of Roe’s approximate Riemann solver [27] to integrate the Euler equati
in Eq. (7). The use of the word “modified” here relates to the fact that the solution proced
is carried out in terms of primitive variablgs v, andp, instead of conserved variablespv,
andE. The three algorithms differ, however, in the iterative method used to solve Eq. (
two of them employ a nonlinear Newton—Krylov scheme [17, 18], while the other relies «
a linear solution methodology. Let us first outline the Godunov method that is commor
all three algorithms, and then proceed to a discussion of the different conduction modt

The basic idea in Godunov’s original method [19] is to first assume a piecewise cons
distribution of the conserved variablésin each computational cell. Then, the resulting
initial-value problem for the Euler equations is solved region-by-region in the flow usir
these piecewise constant data. Effectively, this generates a sequence of local Riemann
lems [7] with left and right state vectors centered at the boundaries between grid cells.
the Euler equations, solutions of the Riemann problem may consist of shock waves, cor
discontinuities, and/or rarefactive waves. Once the Riemann solutions are determined
updated values of the hydrodynamic variables are pieced together by interpolating
onto the computational grid.

Formally, the averaging procedure in a Godunov method is performed by replacing
original dataU(r, t) with a discretized set of piecewise constant states:

1 Mjt+1/2
y"

= — MdVv. 1
i AV, ur,t™d (10)

lj-1/2

Here, we consider a spherically symmetric numerical {rriglin the radial direction, where

j is a positive integer, andr; = rj,1,» —rj_12 is the mesh spacing. The braces here ar
used to represent ajl values from 1 toN, whereN is the number of grid cells. In what
follows, we assume a uniform mesh so that the spacing between cells is simply gi
by Ar. The boundary between thgh and j + 1 cells is denoted by; 1/, and the cell
volume isAV; = V(rj112) — V(rj—12). The superscriph signifies thenth time level
wheret" = nAt, and At is the time step size. Here, we consider only interior points o
the computational grid; boundary conditions are addressed in our discussion of the
problems in Section IV.
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With these definitions, we can apply Godunov’s method to calculate the updates of
hydrodynamic variables. Integrating Eq. (7) over the cell volutg and a time step
t" <t < t"yields

At At
1. +1/2 +1/2 +1/2 +1/2
U~ U] = < (AP e — AjmaFiti) = < (Gliae — Gili). - (1)
]

whereA;.1/2 = A(rj+1/2) is the area between théh andj £ 1 cells, and we have used the
approximatiordV/dr ~ AV;j/Ar to obtain the last term on the right side of the equatior

above. The symbol§['17> andG' 75 denote the time averages®andG atr j11/2:

tl’l+l

1
Flis = E/ FIU(rjs12. t)] dt, (12)
tn
Gn+1/2 — i thrlG [U (I" t)] dt (13)
N j£1/2, .

The problem then reduces to estimating these quantities from thedgtavith an ap-
propriate Riemann solver. Once the Riemann solution is found, the hydrodynamic st
of the calculation is complete for a single time step. We employ a modified Roe’s sche
to perform this stage of the calculation, the details of which are given in the Append
Let us now turn to a discussion of the different ways the three codes incorporate nonlin
conduction effects into the hydrodynamic solution.

A. A Linearized Implicit Scheme for the Radiation Diffusion Equation

The first method for integrating Eg. (8) that we consider is a linearized implicit techniqu
The distinguishing features of this approach to bear in mind are that it is first-order accur
by linearized analysis, and nonlinearities are not converged within a time step. By this
mean that the nonlinear coefficient of thermal conductian Eq. (8) is evaluated with
previous time-step solutions so that we haviinaar implicit problem to solve at each
time level. Incorporating conduction effects into the hydrodynamic solution in this way
sometimes referred to as “classical” operator splitting.

The integration scheme for our radiative hydrodynamic equations in this case proce
as follows. At the beginning of the + 1 time step, updates of mass, momentum, and tote
energy densities are determined from solving the Euler equations in Eq. (7) with the expl
Godunov scheme outlined above. Schematically, we can represent this process as

n+1
Pj

U — U* = ¢ (o)}

By

The total energy densityE]} obtained in this stage, however, is only an intermediats
result; the effects of thermal conduction must now be included. This is accomplished
temporarily suspending hydrodynamic activity, holding the varialaﬂé*s1 and (,ou)‘j1+1

fixed, and solving the finite-volume form of the diffusion equation in Eq. (8) for the ne\
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temperatureﬂ'j“H. That is, we must solve

Cvp?+1Tjn+l + (pv2)?+1/2 _ ET
At
_ A2 k(TR =T /A A ]l o (TH = T /Ar
AV AV

. (14

wherecy = R/(y — 1) is the specific heat at constant volume. Here, we have related t
total energy density to the temperature accordingte cypT + pv?/2. The coefficient
of thermal conductior in Eq. (14) is evaluated at cell interfaces by linear interpolation o
the cell-centered densities and temperatures:

n+1 n+l\ @ n n b
P+ pj T+ T
an+1/2:/<0< j > 1+1> ( i 5 J+1> _ (15)

Sincex is evaluated at the old time level of temperature, Eq. (14)ésar in the unknowns
{Tj““}, and the resulting tridiagonal system can be solved in a number of ways. The ti
step is complete once the new temperature profile is determined, and the solution vect
updated accordingly:

n+1
Pj

U* N Un+1 — (pv)fj'l+1

n+1
E;

The process then repeats with these values serving as the initial data for the next time

One possibility for solving Eq. (14) is to use a direct method such as the standard tr
agonal solver [15]. This technique is extremely efficient for one-dimensional problems,
unfortunately, its efficacy does not extend to higher dimensions. For that reason, we che
not to employ a tridiagonal solver as a benchmark of standard linear-scheme performs
with which to assess the accuracy and efficiency of Newton—Krylov algorithms for tf
class of problems. Any conclusions reached by doing so could not be expected to c
over into two or three spatial dimensions, which is undoubtedly where the true utility
Newton—Krylov schemes lies for radiative hydrodynamic calculations. Instead, the solut
methodology that we adopt is a linear iterative solver. The particular solver that we usi
known as GMRES [17] with symmetric Gauss—Seidel preconditioning [14]. Some of t
details of the GMRES method will be explained in the next section.

Currently, linear implicit methods are widely used in radiation hydrodynamics codes
22]. Thisis true despite the fact that usually no facility exists in the computational algoritt
for monitoring the size of nonlinear residual terms or for quantifying the error introduce
into the solutions as a result of a linearization procedure. Indeed, in our treatment h
nonlinearities have been completely disregarded by evaluatingT ) with old time-level
information for the temperature. As a general practice, the extent to which this numeric:
inconsistent process [5, 14] degrades the fidelity of solutions is difficult to assess, but
doubtedly, significant errors can be introduced [16]. We return to this issue in Section
when we discuss the performance of linearized implicit schemes as applied to our partic
radiative hydrodynamic examples. In the next two sections, we explore consistent alte
tives to the linearized implicit technique known as iterative Newton—Krylov methods,
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which nonlinear residual terms are monitored and converged within a computational ti
step. From previous studies without hydrodynamics, we expect these methods to pe
time steps that are larger than those in the linear implicit approach for the same leve
accuracy.

B. A Newton—Krylov Scheme for the Radiation Diffusion Equation

The computational difficulty associated with integrating Eq. (8) lies in the coefficiel
of thermal conductior, whose temperature dependence is modeled as a nonlinear po\
law (e.g.,x ~ T*¥?2). In a true implicit scheme, a direct method cannot be applied t
this problem; some sort of nonlinear iterative procedure is necessary. Here, we descri
first-order, iterative Newton—Krylov method and its use in evaluating the diffusion term
Eq. (8). Unlike the linear implicit method discussed in the previous section, the emphasi
this scheme is to monitor and converge nonlinearities below a certain tolerance before
completion of a time step. Compared to the standard Newton’s method, the Newton—Kry
approach is advantageous in that one can avoid the computational difficulty and expen:
forming and inverting the Jacobian matrix.

Since a discussion of Newton’s method can be found in many textbooks on numer
methods (e.g., see Ref. [15]), we shall not be concerned with trying to give a compl
description of it here. Rather, our intent is to underscore the unique features of compo
Newton—Krylov schemes. In particular, we wish to elucidate the Jacobian-free aspec
coupling Newton’s method with a linear Krylov solver, which we describe briefly below
For additional information on Krylov methods, the reader is referred to Refs. [28, 29].

The first step in the implementation of any Newton-based algorithm is to determine
appropriate nonlinear function(s) at each grid cell. In our case, these functions are defi
from the discretized version of Eq. (8). Specifically, we have

CV,O?+1TJ-H+1 + (pUZ)er—l/z _ E AJ+1/2K1+1/2 (Tjnjll Tjn+1)/Ar

fi =
. At AV
Aj 1okt (T = T /A
+ ) (16)
AVj

where
1 p;H-l_i_pJnji Tn+1+-|-Jn++11 17
Kj+1/2 = Ko 5 > : a7

The goal of the Newton—Krylov scheme is to iteratively drive the functiptoward zero
at each grid cell. Let us now explain how this is accomplished.

In a standard Newton method, one seeks the solution of a nonlinear system of equat
written in the formf(x) = 0, wherexis known as the “state vector.” For the problem at hand
we havex = {T;j}, andf(x) = {f;}, where the functiond; are those defined in Eq. (16).
To determine, Newton’s method prescribes an iterative procedure derived frofimgneer
system of equations

JidxXk = —F(Xk), (18)

whereJ represents the Jacobian matkis a nonlinear iterative index, atd is the update
of the state vector, which is found from multiplying both sides of Eq. (18) by the inverse
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J. New values ok are computed from the recurrence relatiQm = Xk + 8xx. The process
is considered complete ond&(xy) |2 is less than some nonlinear convergence toleranc
For our purposes here, this tolerance is either® 10 107.

The primary disadvantage of Newton’s method in its standard implementation is that it
be difficult and time consuming. To form and then invert the Jacobian matrix in Eq. (18), ©
must take partial derivatives bivith respect to the different components of the state vegtor
and one must do this for each stage of the nonlinear iteration process. For some system
evaluation of the Jacobian coefficients can be carried out analytically, but more likely, sc
sort of numerical scheme for estimating the derivatives is required. Such an exercise cz
unduly problematic and expensive, particularly when a large nonlinear system of equat
is involved, or when the functional dependences of physical variables are expressed in
ular form. In the present study, we avoid this difficulty by coupling Newton’s method with
Krylov solver [28] that never requires the formation of the actual Jacobian matrix. The p
ticular Krylov method that we employ is the GMRES algorithm due to Saad and Shultz [1

In a Krylov method, the solution update is expressed as a linear combination of so-ca
Krylov vectors(rg, Jro, J°ro, ..., J'ro), where the index denotes the level of the Krylov
iteration, andrg is an initial linear residual defined kg = —f(xx) — Jkéxko. Here, the
symbol §xyo represents an initial guess for the update of the state vector at a partict
nonlinear iteration level; this value is typically taken to be zero. Although the GMRE
iteration takes place at a fixed nonlinear indkexve find it helpful to write the update with
two indices k andl. The expansion ofxy can be written as

-1
8X = 8Xko + Z BmIy o, (19)

m=0

where thefy’s are scalar coefficients. These coefficients are determined fdthHm-
ear GMRES iteration by minimizing the quantifdkdxy + f(Xk)||2 with a least-squares
method. This requires the use of the Krylov vectors constructed during the préviolis
iterations. The condition for the termination of a linear GMRES iteration is given by

38Xt + Fxi) 12 < TlIf (X ll2, (20)

where|[f(xk)|l2 is the residual of the present nonlinear iteration, ans a linear conver-
gence tolerance; typically, we take= 10~2. Throughout this study, we limit the maximum
number of Newton and GMRES iterations to 15 and 100, respectively.

Formulated in this way, our scheme is more correctly described as an “inexact” Newtc
method because the convergence criterion is adjusted during each nonlinear iteration.
is a useful feature that can do much to improve the efficiency of Newton’s method
the following reasons. When the nonlinear residual is large and the solution is far fr
convergence, there is no point in spending much computational effort solving the lin
problem well. However, when the solution is nearly converged, it makes sense to exp
more effort in the linear routine since the superlinear convergence rate in the final New
iterations is tightly coupled to the accuracy of that solution [30].

Another noteworthy quality of the Newton—Krylov scheme is the fact that the GMRE
algorithm involves only theroductof the Jacobian matrix with a vector. This fact plays
a key role in the utility of the method. Because the Jacobian—vector product can be \
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approximated by a first-order Taylor series as [16, 18]
Jy = [f(x + €y) — f(X)] /¢, (22)

the Jacobian by itself is never required, which is highly desirable from a computatiot
standpoint. Here, the vectgiis an element of the Krylov basis, and the scalér a small
perturbation. In this study, the value ofs given by

N
DINERS

€
NIlyll2

(22)

where the constant parametghas a value of 1.

To further enhance the performance of our Newton—Krylov scheme, we employ a “p
conditioner.” Preconditioning is a process that approximates the inverse of the Jacol
matrix in such a way as to efficiently cluster together the eigenvalues of the iteration ma
[16, 30]. This in turn reduces the number of GMRES iterations required to reach conv
gence. The inverse of the preconditioning matrix is much easier to form than the invers
the true Jacobian of the system.

Let P denote the preconditioning matrix such tiRt* ~ I. The system of equations we
wish to solve is then

JPIPsx = —f(X). (23)

We chooseP to be the tridiagonal matrix resulting from the linearized implicit schem¢
discussed in Section IlIA. Letting the vectgrdenote the produd® §x, the left side of
Eq. (23) is approximated as before using a first-order Taylor expansion

IP1q ~ [f(x + eP71q) — f(X)]/e. (24)

The inverse ofP is found iteratively,but not to convergenceising a symmetric Gauss—
Seidel technique [14]. In other studies, preconditioners based on the multigrid method h
also been used [30-32].

The description above highlights the important principles of Newton—Krylov algorithrr
as employed in this investigation. Because of their utility for accurately and efficient
integrating other nonlinear systems of equations, we have been motivated to apply New!
Krylov methods to radiation hydrodynamics. Previous work [16, 30] has shown th
Newton-like nonlinear-convergence behavior can be achieved without undue computatit
expense through the approximate matrix—vector multiplication procedure in the GMR
routine. This savings in computational effort is principally a result of the fact that tt
Jacobian matrix never has to be formed or inverted, which is the impetus for referring
the scheme as “Jacobian-free.” In the previous studies cited above, significantly impro
performance over traditional linearized—implicit methods was documented using Newtc
Krylov techniques to converge nonlinearities in nonequilibrium diffusion calculations; o
aim here is to see if this trend extends to the present class of problems.

Note that we are coupling a Newton—Krylov scheme to a Godunov-based hydroc
namic integrator in the same way as the linearized implicit method. Once again, the
cedure at each time step is first to find provisional updates for the hydrodynamic ve
ablesU* = [p"*1, (pv)™*1, E*]7 with the Godunov scheme. Unlike the linear implicit
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method, though, the approach here is then to incorporate the effects of radiation trans
by iteratively solving Eqg. (18) to convergence for the temperature prb'l‘i'i‘él} using a

Newton—Krylov method. The temperature data are then used to compute the final upi
U™t = [p"1 (pv)™1, E™1]7. One disadvantage of this version of the integration schen
is that it is strictly first-order accurate. In the next section, we describe a possible techni
for extending the coupled Godunov/Newton—Krylov algorithm to higher order in time fi
smooth regions of the fluid flow. This is done by embedding the Newton—Krylov procedt
within the predictor—corrector structure of Hancock’s two-step Godunov solver [33].

C. A Newton—Krylov Method within a Predictor—Corrector Framework

We now consider an approach for achieving higher-order accuracy in time with our c
pled Godunov/Newton—Krylov method. One likely means of improving the time accura
is to structure the Newton—Krylov algorithm within a predictor—corrector framework [15
Since the Godunov method used to integrate the hydrodynamic equations already poss
this architecture, it is straightforward to modify the algorithm accordingly. Our procedu
for implementing this modification can be summarized as follows.

The first step is to replace the implicit diffusive fluxes in Eq. (16) with a combination c
both implicit and explicit terms. To do this, it is convenient to introduce an implicit—explic
parametep that varies between zero and one. Fet 1 the Newton—Krylov algorithm is
fully implicit, whereas fom = 0, it is completely explicit; the choicg = 1/2 corresponds
to an equal mixture of explicit and implicit terms (as in the Crank—Nicolson method [34
For simple linear diffusion equations, this choice is a common one because it provides |
unconditional stability and second-order accuracy in time [6]. In the predictor—correc
formulation of our coupled algorithm, the Newton—Krylov iterative process is called twi
during each time step, and a different valué & used for each call. During the “predictive”
Newton—Krylov iterations, where there is no reason to solve the problem to high accur:
we choose& = 1, while for the “corrector” stage, we set= 1/2 in an effort to achieve
second-order convergence.

With the parametef, the discrete approximation for (the negative of ) the heat flux ¢
each cell interface can be written in the mixed implicit/explicit representation as

dia2 = 0 k12 (TNT = T /A1 + Q= O], 1o (TR = T) /AT (25)

Here, the explicit form of the coefficient of thermal conductiop,, ,, is to be evaluated
using old time-level information for both temperatured density. Note that this differs
from the expression in Eq. (15). The appropriate set of nonlinear functions is

1 1 1
ovo T+ (v /2 — B Ajsagediiye — Aj-edioae

26
At AVJ' (26)

fj =

As before, the goal of our Newton—Krylov procedure is to iteratively drive the fundton
below some specified nonlinear convergence tolerance at each grid cell.

The predictor stage of the calculation begins by first invoking the Newton—Krylov meth
with 6 = 1 in Eq. (25) to compute cell-centered temperature values at the half time le\
{Tj”“/z}. These data are used to estimate the divergences of the heat flux at each cell, w
are then added to the time derivativesoefand p used in the primitive-variable Riemann
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solver; see Eqs. (48) and (49) in the Appendix. Specifically, we add the factor

Nt1/2 (TNHL/2 i+l N+1/2 (Tn+l/2 n+1/2
Ajrasz s (T "= T7%) AT — Aj_1p 7175 (T, )/ Ar

AV]

to the right-hand side of Eq. (48). The redundant expression for the time derivative of
pressure in Eq. (49) is modified by the addition of the same term, but with a multiplicati
factor of (y — 1) in front (see Appendix). Here, the coefficients of thermal condueﬂ?@“ﬂzz

are evaluated with temperature data at the half time levell/2, but with density values
at the old time leveh. The evaluation of time-centered expressions for the hydrodynam
variables [Egs. (44) and (45)] in this way constitutes the “predictive” part of the algorithr
In the corrector stage, the Riemann problem is solved to give the provisional updates of
conserved variableg* = [p"*?, (pv)"*1, E*]7. This is followed by a second call to the
Newton—Krylov scheme with = 1/2 to determine the temperature at the time level 1,
and hence the final updaté*+* = [p"*1, (pv)"*1, EM*17,

Formulated in this way, conduction effects have an opportunity to provide “feedbac
and influence hydrodynamic motion during each time step. It can be said that this met
of coupling nonlinear radiation diffusion with hydrodynamics retains less of the charac
of operator splitting than the previous Newton—Krylov scheme, which itself differs fror
the traditional brand of splitting typified by the linearized implicit approach. Before con
paring the performance of the linearized implicit, Newton—Krylov, and predictor—correct
Newton—Krylov schemes on several numerical examples, we first turn to a brief descript
of the method of time step selection used in this study.

D. Time Step Control

Time step control in radiative hydrodynamic computations is complicated by the fz
that the coefficient of thermal conductianis usually a (nonlinear) function of density
and temperature. In general, there is no optimal method of selecting time step sizes in
case. Over the years, though, several techniques have been developed and utilizec
schemes that do not converge nonlinearities, one of the most popular approaches is k
on monitoring the relative change in a dependent variable such as the total energyBensi
(See Bowers and Wilson [1] for a discussion of this common practice.) The process be
by first making a conservative initial guess for the time stéphat is likely to satisfy alll
stability requirements. The idea is then to increase the sizd @fs much as possible in a
systematic way. This is done by first computing the maximum relative changeirer a
single time step according to

A\ (IET—E
— =max| ———— |, 27
< E ) j Ei" + Eo @7)

where the parameté; in the denominator is added for regularity and is usually an estima
for the lower bound of the energy density. The new time step is then determined from

AN — A" w’ (28)
\ (AE/E)max
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where(AE/E)max IS @ specified target value for the relative chang&irtypically, this
value is chosen to lie between 5 and 20%. The use of the square rootin Eq. (28) is an att
to make the new time step smoothly approach the target value. The justification often c
for employing this method of time step selection is that as long as the relative chang
energy is kept “small,” the errors introduced by a linearization procedure are not significe

An alternate method for selecting time step sizes in nonlinear diffusion problems v
suggested by Rider and Knoll [35] and is based on a heuristic criterion for estimat
nonlinear wave speeds. The essential idea is to replace the complicated system of equzc
involved with a simplified hyperbolic model given by

oE 0E

— — =0, 29

at (29)
where the “front velocity™v¢ is an unknown function. The selection procedure is then t
specify a desired front-CFL value from which the time step is computed according to

Ar
At = front-CFL x —-. (30)
Ut

In this approach, the prescription for calculating the front veloeitys

IHAE"/ Aty
P = AN AT (31)

v .
ITAE/Ar ]2

Coupled with the Newton—Krylov technique, the front-CFL method of time step contr
in nonlinear diffusion problems has proven [40] to contribute to high-quality results wi
reduced cost compared to the standarBl/E method and is used exclusively in this
investigation. We should mention, though, that for more complex, radiative hydrodynar
systems, the general criterion by which the front velocity is to be selected with this appro
is unclear. It is likely that the expression given in Eq. (31) will require modification whe
applied to problems more complicated than those considered in this study.

We should also remark that in our numerical codes, the actual time-step selection pro
involves a comparison with an estimatexdfbased on pure fluid motion for a hydrodynamic
CFL number of about /2. The procedure is always to select the most restrictive of the tw
estimates. Furthermore, the sizeAdf is never permitted to increase by more than a facto
of 2 between any two consecutive time steps. Let us now consider the application of
time-integration techniques described in this section to a series of one-dimensional
problems.

IV. RESULTS

In this section, we investigate the performance of our three numerical schemes on
eral one-dimensional problems in spherical geometry. Our intent is to compare the t
accuracy, convergence properties, and CPU cost of the three methods for solving the ¢
problem. As we shall see, the predictor—corrector Newton—Krylov scheme is consistel
and significantly more accurate for roughly the same time step size than both the linear
implicit and first-order Newton—Krylov methods, but also more expensive in terms of CF
cost. For each of the test problems considered, the time accuracy comparisons are me
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a fixed grid size that was chosen to give a reasonably well-converged solution. We shc
point out, however, that the scope of the present study was limited to errors associated
time step size only; we are not concerned here with presenting results of the converge
behavior of the solutions under refinement of the spatial grid. All runs in this study we
performed in double precision on a Sun Ultra 60 computer operating at 360 MHz.

As mentioned in the previous section, the front-CFL technique of time step control [3
is used throughout this investigation. While convergence trends are similar for both
AE/E and front-CFL methods, the latter appears to be a more advantageous means of
step selection for the types of radiative hydrodynamic problems studied here. In all ca:
the time accuracy and convergence properties of the three methods are examined by plc
the absolute., error in the final temperature profile versus the specified (target) front-CF
value. The absolutk, error is defined as

N 1/2
[Z (Ty - Tje)Z] ;
j=1

where the datd® constitute the “exact” solution fokt — 0. This is taken to be the result
from a run using the predictor—corrector Newton—Krylov method with an exceedingly sm
front-CFL value (typically 104-103).

Thefirsttest case that we consider is the so-called Barenblatt problem [3], which descr
nonlinear thermal conduction from a point source. Since this problem has an analyti
solution in terms of a similarity variable [3, 36], it is a useful starting point in our stud
for purposes of code validation. For all three numerical algorithms, the Barenblatt limit
reached by simply disabling the update of fluxes in Eq. (11) so that hydrodynamic motiol
suspended, and we are essentially solving a nonlinear diffusion equation for the temper
profile. The nonlinearity in the problem results from the assumed form of the coefficie
of thermal conductior. For this class of problems, results for two different temperatur
dependences of are presenteck ~ T%2 and« ~ T*¥2, (The first choice represents
an effort to mimic classical Spitzerdth electron thermal conduction in a plasma [41],
whereas the second corresponds to the dependence in a high-temperature fully ior
plasma in which bremsstrahlung is the dominate radiative transfer mechanism [24].) -
power lawT 1¥/2 gives rise to a solution with a much steeper thermal front fhgA, but
overall temporal convergence rates for both dependences are still second order.

In the next two test cases, hydrodynamic activity is enabled in our numerical schen
and our first objective is to examine convergence properties for nondiscontinuous ini
conditions. This is done by simulating the evolution of a smooth initial distribution of th
energy density up until a point where the solution profile has an opportunity to “shock.” T
motivation for considering this problem is not necessarily to model a particular physic
process, but to examine the accuracy and convergence behavior in the absence of n
discontinuous spatial profiles such as shock fronts. We find, though, that even when s
gradients are not present, the convergence rate in time of the error is essentially first o
for all three schemes. This result is a consequence of the nature of the two-step Han
scheme used in our Godunov method and is discussed further in Section IVB.

For the third class of radiative hydrodynamic test problems, we follow the recent work
Shestakov [23] and simulate point explosions with nonlinear heat conduction. Two diff
ent problems, each with a different initial energy deposition, ambient density profile, a
coefficient of thermal conduction, are considered. These test cases are essentially a h
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of the Barenblatt [3, 36] and Sedov [37, 38] blast-wave problems. Not surprisingly, t
convergence rates of all three coupled schemes for this class of problems are first ordel
they would be for any shock capturing method [5].

A. Nonlinear Thermal Conduction from a Point Source (the Barenblatt Problem)

Let us begin by comparing the accuracy of the three methods for a simplified physi
model in which hydrodynamics is absent from the descriptioa- 0). That is, we seek
solutions of the diffusion equation

T 149 [, aT
= =% (r2, 20, 32
ot r2ar( X8r> (32)

where we have introduced the thermal diffusivitydefined byx = «/(pcv); the density

p and the specific heat, of the material are assumed fixed. For coefficients of therm:
conduction that obey a power-law dependence on temperatuzes TP with b > 0, it

is well known that this equation possesses an analytical solution in terms of a simila
variable. This solution is due to Barenblatt [36].

In the statement of the Barenblatt problem, we imagine that at timeéd an energy
&o is released in a static material at the paint 0. (In our numerical code, we simulate
this situation by initially assigning the energy density in the first computational cell
value of&y/ AVy; no “injection” of energy across a cell boundary is required.)tFsr0, a
propagating thermal front results with the zero-flux boundary condifiofdr | _o = 0. The
temperature profile at any given time is relatedgdy a statement of energy conservation:

&o o0 2
=— = T4nr<dr = const. (33)
pCv 0

The constan@ has physical units of degm? and is a convenient parameter for formulating
the similarity solution.

For purpose of benchmarking our numerical results, it is helpful to write down tt
analytical solution of the Barenblatt problem in spherical geometry. This can be summari
as follows. Letting  denote the position of the thermal front, the temperature profile fc
timet > 0 andr < r; is given by [3]

o\ 1/b
r
T=T, (1 - 2) , (34)

where
re = &(xoQPt)Y 2, (35)

Here,xo = ko/(pCv) and the constard is a function ofb only:

b = M 1/(30+2) rG/2+ 1/b) b/(30+2) 6
0= 2b—1pyb T+ 1/b)r(3/2)
In Eq. (36), the symbdI" denotes the gamma function. The temperature=at0 is
_ Qs b | -
"3 [2@+2)]
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FIG. 1. Nonlinear thermal conduction from a point source (the Barenblatt problem}=a.3 for & = 10
andx = T2, The solid line is the analytical solution.

Forr > r¢, the temperature is given by its ambient value, which we take to be a positi
number close to zero(10~%). In the simulations, the temperature initially has this value
everywhere except in the first cell, where it is equadgd(ocy AV1).

Figure 1 shows a comparison for= 5/2 of Barenblatt's solution with the temperature
profile obtained from the predictor—corrector Newton—Krylov code in which hydrodynam
motion was disabled. The agreement for this method, as well as for the other two sche
(not shown), is quite good. The initial energy in this case $@as 10, and the data are pre-
sented at = 0.3 withxo = 1, cy = (y — 1)~%, andp = 1. Figure 2 shows the dependence
of the L, solution error for the three different methods versus the target value for the frc
CFL. In all three cases, a computational grid with 200 cells was used, and the guess fol
initial time step was very smaliAt©@ = 1028, (This guess was based on a rough estimat
for the characteristic diffusion time between the first and second eeisix ~ 10-20)
The “exact” solution was taken as the predictor—corrector Newton—Krylov method with
front-CFL value of 103,

10° -
107
10°
10°
10"
10°
10°
107

O—0 linearized implicit

Absolute L, Error in Temperature

1 0-5 [ 4 Newton Krylov ]
&—8a predictor-corrector Newton Krytov
107 3 = = [}
10 10 10 10
Front CFL (Target)

FIG. 2. Time-step convergence comparison using 200 computational cells for the Barenblatt problem sh
in Fig. 1. The absoluté., error in the temperature profile is plotted versus the target front-CFL number. Th
nonlinear convergence tolerance for this series of runs was E0r the linearized implicit data, a linear tolerance
of 10-° was used.
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TABLE |
The Approximate Cost in CPU Seconds of the Three Methods
versus the Target Front-CFL Value for the Data in Fig. 2

Method

Front-CFL value LI NK PCNK
0.5 6 34 62
0.25 10 43 96
0.1 20 70 180
0.05 33 120 327
0.025 59 227 591
0.01 129 501 1271
0.005 243 831 2331
0.0025 466 1669 4362

@ The abbreviations LI, NK, and PCNK stand for linearized implicit, Newton—
Krylov, and predictor—corrector Newton—Krylov, respectively.

In this figure, it is clear that the predictor—corrector Newton—Krylov method, with it
second-order convergence rate, is far superior to the other two schemes, which only s
first-order convergence. For the same front-CFL target value, this scheme achieves e
that are approximately three to five orders of magnitude smaller than the linearized impl
approach. Furthermore, the algorithm is also significantly more efficient, as can be s
by consulting Table I, which shows the cost in CPU seconds for the data in Fig. 2. |
example, at an absolute, error of roughly 103, the predictor—corrector Newton—Krylov
code can be run with a target front-CFL value of 0.5 for a cost of 62 CPU seconds, whel
the linearized implicit algorithm requires a front-CFL value about 100 times smaller, whi
is approximately four times more expensive. This advantage, however, does not hold
the first-order Newton—Krylov code. While roughly a factor of 5 more accurate for a fixe
front-CFL value, it is slightly less economical than the linearized implicit algorithm.

A second series of runs was performed usii)) = T1¥2. An exemplary solution profile
is shown in Fig. 3 fot = 1 andf, = 10. Note that the thermal front now has a much steepe

Temperature

0 L 1 L Il 1 1

0 0.2 0.4 0.6 0.8 1
r

FIG.3. Nonlinearthermal conduction from a point sourceat1for&, = 10 andc = T'¥2, Note the steeper
thermal front in this figure compared to that in Fig. 1.
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FIG. 4. Time-step convergence comparison using 200 computational cells for the Barenblatt problem she
in Fig. 3. The nonlinear convergence tolerance for this series of runs wasFPds the linearized implicit data, a
linear tolerance of 1@ was used.

appearance than in Fig. 1. Here, the characteristic diffusion time\wasy ~ 4 x 10746,
and consequently, a rather conservative value of4@as used for the initial time step,
At© . A convergence plot is shown in Fig. 4 for the three different numerical scheme
and a comparison of the CPU cost for these data is given in Table Il. The “exact” soluti
was defined as the predictor—corrector Newton—Krylov method with a target front-Cl
value of 10°. The trends here are similar to the previous Barenblatt problem. Despite 1
presence of a very steep solution profile, the predictor—corrector Newton—Krylov code ¢
achieves second-order convergence. Once again, for an abisgleteor of roughly 102,
this scheme is about four times more efficient than the linearized implicit one.

We should point out that the reason a second-order, temporal convergence rate is se
these problems is that both the “exact” and computed temperature profiles were determ
at the same set of discrete points on the fixed numerical grid. The “exact” solutions w
obtained by fine temporalbut not spatial—refinement and thus possess thermal front:

TABLE Il
The Approximate Cost in CPU Seconds of the Three Methods versus
the Target Front-CFL Value for the Data in Fig. 4

Method

Front-CFL value LI NK PCNK
0.5 10 51 -2
0.25 16 66 163
0.1 32 118 303
0.05 53 187 513
0.025 91 349 954
0.01 194 695 2068
0.005 360 1365 3620
0.0025 678 2402 7195

a Solution did not converge to specified tolerance within 15 Newton iterations
during at least one time step.
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with more or less the same “sharpness” as in the computed solutions. It is important to n
though, that these thermal fronts are not true discontinuities, but rather are composed
sequence of steep line segments joined together and extending over several grid points
exact (and truly discontinuous) analytical solution to the Barenblatt problem were usec
compute the error terms, the convergence rate would almost certainly not be second o
it would likely be much closer to zeroth order [5].

We should also comment here about an issue concerning the Crank—Nicolson structu
the corrector stage of the Newton—Krylov algorithm. For lineas const) heat conduction
problems, it is well known [6, 13] that while the Crank—Nicolson method is second-orc
accurate in time and mathematically stable, it gives completely wrong answers when the
of the time step is relatively large. In the present context of nonlinear thermal conducti
however, the use of a Crank—Nicolson formulation (with a time step based on the front-C
method) does not appear to lead to any loss of fidelity in our numerical solutions, eventho
the time step sizes used in our calculations are often orders of magnitude larger than
required for linear stability (and accuracy). This observation is not too surprising, thou
in light of the fact that in the nonlinear case, the coefficient of thermal conduetibhis
large behind the thermal front (where the temperature is large, but the gradient is sm
and small near its “foot” (the only place where the temperature gradient is appreciab
Such an arrangement tends to reduce the magnitude of the heat flux-te¢a, /ar), in
the energy equation [Eqg. (6)], and thus permits high-fidelity solutions for somewhat lar
time step sizes than could otherwise be used in a linear conduction problem.

B. The “Smooth” Problem

In this and the following section, we turn to more complicated classes of problems
which hydrodynamic motion is allowed to participate in the dynamics. Here, however, |
first limit our attention to so-called “smooth” flows in which nearly discontinuous feature
such as steep thermal fronts and shock waves are absent from the numerical solution
simulation of smooth flows is performed by following the evolution of the nonlinear wave
that result from an initially nondiscontinuous energy density profile up until a point whe
the solution steepens appreciably, or becomes “shocked.” The purpose of this sectic
to assess the convergence rate of our schemes under such circumstances. The bot
conditions for the hydrodynamic variables in this section are “reflective” and “outflow
conditions [13] at the left and right ends, respectively, of the computational domain. As
the previous section, zero-heat-flux boundary conditions are used for the temperature.

Our approach is to adopt a Gaussian profile for the initial energy-density profile. That
we take

Eoexp( —r2/c3)
(Co/m)?

wherec, is a positive constant; for our purposes, we chamse 1/4. Note that the limit
co — 0 gives a delta function at the origin, and the normalization factor is such that

E(Mlt=0 = (38)

/ E 4nr?dr = &. (39)
0

In order to specify the energy-density profile in the numerical codes initially, though, v
need to compute the discrete value€oih each cell. This is done by integrating Eg. (38)
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over thejth cell fromrj_1,> torj,1/2. The result is

50 [erf(rj+1/2/co) — el’f(r]_l/z/Co)] — ZJTCS [Fj+1/2E (ri+1/2) —rj _1/2E (rj_l/z)]
AV,

)

Ej=
(40)

where the symbol “erf” denotes the standard error function.

We now follow the evolution of this smooth profile in time, being careful to stop the sin
ulation at a point well before the solution becomes essentially discontinuous. We cho
& =100 andp(r) = 1/r for the initial energy and density, respectively, and set the coe
ficient of thermal conduction to(T) = T%2. The guess for the initial time step here was
At© = 10719, The resulting simulated profiles of density, pressure, velocity, and tempe
ature are shown in Fig. 5 &t= 0.01.

Figure 6 presents a comparison of the convergence properties of the three methoc
applied to this coupled problem. The “exact” solution was defined to be the predictc
corrector Newton—Krylov result with a target front-CFL value of-10Note that while
the convergence rate of all three schemes is nominally first order, the predictor—corre
Newton—Krylov method still has an absolutgerror in the temperature profile thatis always
two to three orders of magnitude smaller than that obtained with the linearized impli
algorithm for a fixed front-CFL value. Compared to the Barenblatt problem, though, t
gainin efficiency of this method has decreased somewhat, as can be seen from the CPU
displayed in Table Il for the data in Fig. 6. For the few data points that permit comparis

18 T T T T

Temperature

FIG. 5. The profiles of (a) density, (b) pressure, (c) velocity, and (d) temperattire- &01 for an initially
Gaussian energy-density profile wifh = 100, « = T¥?, andp(r) = 1/r. The solution has not yet “shocked.”
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FIG. 6. Time-step convergence comparison using 200 computational cells for the “smooth” problem shc
in Fig. 5. The nonlinear convergence tolerance for this series of runs wésPdd the linearized implicit data, a
linear tolerance of 1€ was used.

at the same error level, we see that the predictor—corrector Newton—Krylov code provi
about a factor of 2 savings over the linearized implicit algorithm. Compared to this lat
method, the other Newton—Krylov scheme also offers consistently more accurate soluti
but is not as economical.

We should remark on anissue concerning the first-order convergence rate of the predic
corrector Newton—Krylov scheme seen in this example. Since nearly discontinuous feat
such as steep thermal gradients and shock fronts are absent from the numerical solt
one might expect this method to achieve approximately second-order convergence, asi
Barenblatt problems. The resolution of this apparent paradox has to do with the partici
Godunov scheme employed here for integrating the hydrodynamic equation; it is alrr
certainly not the result of any coupling issues between the hydrodynamic and conduc
stages of the solution methodology. The two-step Hancock procedure that we use
Appendix) is only second-order accurate in space and time fioxeal Courant number,
vAt/Ar [33]. In Fig. 6, though, the grid spacinyr is constant, and convergenceAt
alone for Hancock’s method is only first order. Thus, given the way in which we ha
chosen to construct convergence plots, we can expect to see first-order behavior for

TABLE IlI
The Approximate Cost in CPU Seconds of the Three Methods versus
the Target Front-CFL Value for the Data in Fig. 6

Method
Front-CFL value LI NK PCNK
0.5 2 10 21
0.25 2 11 23
0.1 3 13 31
0.05 4 18 44
0.025 6 26 70
0.01 13 49 143
0.005 22 90 243

0.0025 41 161 441
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coupled, radiative hydrodynamic problem to which our numerical schemes are appli
This of course will include the point explosions discussed in the next section.

C. Point Explosions

In this section, we study the performance of the three numerical schemes for mode
one-dimensional point explosions with nonlinear heat conduction. An explosion is char
terized by the release of a large amount of energy in a small region of space, and th
simulated in our dynamical codes by initializing the energy dersityith a discontinuous
profile. That is, at time = 0, the value ofE is set to a small value (16) in all com-
putational cells except the first one, where it is assigned a much larger wal@e-1000,
typically). Note that this corresponds to simply letting the parametén the previous
section approach zero. The solution profiles are then allowed to evolve in time accorc
to Egs. (4)—(6). In general, both a thermal front and a shock wave appear in the numei
solution. This class of problem was recently studied by Shestakov [23] within the frar
work of a Lagrangian code [39]. The hydrodynamic boundary conditions used here are
same as in the previous section.

The first problem that we consider is a point explosion into a cold quiescent fluid wi
ambient density = 1. The initial energyy = 20 is “released” in the first computational
cell att = 0. The coefficient of thermal conduction is assumed to be a function of tempe
ature only withk (T) = T2, Profiles of fluid density, pressure, velocity, and temperatur
for this case are shown in Fig. 7 at tirne= 0.05. In this simulation, a shock wave is clearly
visible atr ~ 0.93. Figure 8 shows a time-step convergence comparison for the soluti
to this problem obtained with the three numerical schemes. For each case, a computat
grid with 100 cells was used and the guess for the initial time stepw&5= 1012 The
“exact” solution was taken as the predictor—corrector Newton—Krylov method with a targ
front-CFL value of 10%.

Not surprisingly, the predictor—corrector Newton—Krylov method gives results that a
consistently more accurate (by a factor of approximately 10-15) for the same target frc
CFL value than both the Newton—Krylov and the linearized—implicit schemes, with the lati
being the least accurate. Compared to previous examples, though, the greater accurac
has become more costly, as can be seen in Table IV. Now, the predictor—corrector New
Krylov method is only slightly more efficient than the other two. For example, an over:
L, error in the temperature profile ofSlx 10~ or less requires at least 58 CPU seconds
with the predictor—corrector Newton—Krylov code, whereas an equally reliable answer ¢
be obtained by expending just 20% more computational effort (69 CPU seconds), w
the linearized implicit scheme. The comparisons are much less favorable for the Newt
Krylov code without the predictor—corrector architecture.

The next simulation that we discuss is that of a point explosion with a greater nonline
temperature dependence for the coefficient of thermal conduction. In this case, the det
and temperature exponents foarea = —2 andb = 13/2, respectively. The ambient fluid
density has a spatial dependence givep by = r ~>1'. These particular parameters were
chosen in an effort to compare results with those presented previously by Shestakov |
as well as with solutions given by Reinicke and Meyer-ter-Vehn [24]. It is interesting 1
note that this particular example belongs to a special class of similarity solutions that ex
in radiation hydrodynamics for certain forms of the coefficient of thermal conduction al
certain spatial profiles of the ambient density [24]. For this class of problems, the she
and thermal front both evolve with the same power-law dependence in time so that if
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FIG. 7. Simulation of a weak point explosion with an initial energy&gf= 20. Profiles of (a) density, (b)
pressure, (c) velocity, and (d) temperature are shovin=a0.05. The coefficient of thermal conduction here is
k = T%2 andp = Llinitially.

initial energy of the explosion is large enough, a thermal front will always precede t
hydrodynamic shock wave.

An example of such a “strong” point explosion is depicted in Fig. 9 for an initial energ
& = 235. Simulated profiles of fluid density, pressure, velocity, and temperature are she
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FIG.8. Time-step convergence comparison using 100 computational cells for the weak point explosion she
in Fig. 7. The nonlinear convergence tolerance for this series of runs wésFi@ the linearized implicit data, a
linear tolerance of 1¢ was used.
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TABLE IV
The Approximate Cost in CPU Seconds of the Three Methods versus
the Target Front-CFL Value for the Data in Fig. 8

40

Method

Front-CFL value LI NK PCNK
0.5 2 12 27
0.25 3 14 35
0.1 6 23 58
0.05 9 34 106
0.025 16 66 162
0.01 37 138 372
0.005 69 274 625
0.0025 123 453 1281
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FIG. 9. Simulation of a strong point explosion with an initial energy&af= 235. Profiles of (a) density,
(b) pressure, (c) velocity, and (d) temperature are shovwin=80.05145. The coefficient of thermal conduction
here isk = p=2T1¥2, andp(r) = r !t initially. A thermal front atr ~ 0.9 is visible ahead of a shock wave at
r ~ 0.45. The dotted lines denote the solution in the absence of radiative conduction (i.e, the pure hydrodynz
limit known as the “Sedov” solution [37]).
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FIG. 10. Time-step convergence comparison using 400 computational cells for the strong point explos
shown in Fig. 9. The nonlinear convergence tolerance for this series of runs waga0the linearized implicit
data, a linear tolerance of 10was used.

at timet = 0.05145. The dotted lines in this figure denote the pure hydrodynamic soluti
[37]. Note the presence of a thermal front in Fig. 9 at 0.9, which is ahead of a shock
located at ~ 0.45. The guess for the initial time step here was® = 1012,

In Fig. 10, we show the results of a time-step convergence comparison using the tt
different numerical schemes for this example. A computational grid with 400 cells was u:
throughout because coarser grids for this problem gave solutions that were not well reso
near the origin. Once again, we have plotted the absalpggror in the temperature profile
versus the target front-CFL value. Since the computations were more intensive here the
the other point explosion, we chose the predictor—corrector Newton—Krylov method w
a slightly larger front-CFL target value (18) as the “exact” solution for this problem.
Generally speaking, the conclusions regarding accuracy at a fixed front-CFL value here
the same as for the previous two examples, but now the separation between convergence
has been reduced somewhat. The predictor—corrector Newton—Krylov scheme still yie

TABLE V
The Approximate Cost in CPU Seconds of the Three Methods versus
the Target Front-CFL Value for the Data in Fig. 10

Method

Front-CFL value LI NK PCNK
0.25 19 186 -2
0.10 35 283 848
0.05 60 450 1359
0.025 108 726 2208
0.01 245 1477 4517
0.005 445 2556 7801
0.0025 821 4292 13649

2 Solution did not converge to specified tolerance within 15 Newton iterations
during at least one time step.
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the most accurate solution, but at a significantly greater comparative cost than before
shown in Table V. AnlL, error of approximately 5 x 10-2 in the temperature profile,
for example, now requires 372 CPU seconds, whereas an equally accurate solution ce
obtained for only 123 CPU seconds using the linearized implicit method.

V. SUMMARY AND FUTURE WORK

In this paper, we have studied the performance of three numerical methods for integra
the equations of radiation hydrodynamics in the equilibrium diffusion limit and the low
energy-density regime. Accuracy and efficiency comparisons were made by conside
several, one-dimensional, spherically symmetric test problems. For each of the meth
an “operator split” approach was used in which the problem was separated into two par
purely hydrodynamic piece followed by a conduction module. All methods used the sa
technique to integrate the Euler equations in the hydrodynamic stage (a high-resolu
Godunov scheme [4-7]), but differed in the way they incorporated the contributions
nonlinear thermal conduction into the problem.

Inthe firstapproach, alinearized implicit method was used that simplifies nonlinear ter
by evaluating them with old time-level data. The resulting system of linear equations v
then solved with a linear iterative technique. Such a method lacks (nonlinear) numer
consistency [5, 14] since it makes no attempt to monitor or converge nonlinearities witl
a computational time step. In the field of radiation hydrodynamics, however, this is a co
mon practice [1, 22]. The performance of this linear scheme was compared with that of 1
consistentnonlinear iterative solvers based on Jacobian-free Newton—Krylov technigt
[17, 18], which do converge nonlinear terms within a computational time step. These te
nigues offer a significant advantage over the standard Newton’s method [15] in that tl
do not require the formation and inversion of a Jacobian matrix, yet still achieve desira
nonlinear-convergence behavior. The two Newton—Krylov codes used in this investigat
differed in their order of accuracy in time; one was strictly first-order accurate, while t
other sought to achieve second-order accuracy with a predictor—corrector architecture.

Not surprisingly, the Newton—Krylov algorithms always gave more accurate resul
This finding is consistent with studies of radiation diffusion without hydrodynamics [16
although for that class of problems, even more impressive gains in accuracy were mad
using Newton—Krylov methods. In most cases studied here, the same level of accuracy
preserved by taking time steps in the predictor—corrector Newton—Krylov scheme that w
at least an order of magnitude larger than in the linearized implicit approach. This is true
pure diffusion (the Barenblatt limit), and in the coupled, radiative hydrodynamic problen
Because our hydrodynamic scheme is only first-order accurate in time, though, the ove
convergence rate for coupled problems was also limited to first order, even in the absenc
nearly discontinuous profiles such as shocks in the solution. For the Barenblatt proble
the predictor—corrector Newton—Krylov method achieved a second-order convergence |
even for a problem with a steep thermal gradient.

We should mention that the selection of the nonlinear and linear tolerances was an
portant consideration in this study. When this work was first initiated, a value of 10
was used for both the nonlinear convergence tolerance in the Newton—Krylov schet
and the tolerance of the linear iterative solver in the linearized implicit approach. F
the types of problems and range of front-CFL values considered, though, this value was
always sufficient and needed to be reduced to°i00~’ to provide reasonable
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convergence behavior, particularly below a target front-CFL value of. Newton—Krylov
runs performed for the strong point explosion at a tolerance of, ¥6r example, often had
an error that generally diminished as the target front-CFL value was lowered, but sot
times “stalled out” or contained local sections that were not monotonically decreasi
This behavior was witnessed for several problems in which the linearized implicit meth
was used as well. The explanation for this behavior is likely the accumulation of round-
error over the hundreds of thousands of time steps that were sometimes required for t
calculations.

Perhaps the most salient issue of this study is that of Newton—Krylov efficiency f
radiative hydrodynamic calculations. Quite frankly, the results for the coupled problems
somewhat disappointing in comparison to earlier applications of Newton—Krylov algoritht
[16, 30], which consistently demonstrated the superiority and CPU-cost efficiency of thi
methods over standard linearized techniques. While the predictor—corrector Newton—Kry
code used here proved much more efficient for the Barenblatt problem and somev
more efficient for the weak point explosion, this advantage waned for the strong pc
explosion. Our assessment of this finding is that it is likely a result of the time splitting
the hydrodynamic and diffusion integrators in our solution methodology, and the applicat
of a nonlinear iterative scheme to only the latter.

We wish to point out that this paper represents a first attempt to examine the uti
of Newton—Krylov methods for radiation hydrodynamics. In the future, our intent is f
abandon the splitting of hydrodynamic and diffusion operators altogether and study
performance of the Newton—Krylov technique as applied to the full set of coupled, radiat
hydrodynamic equations. In addition, it will be desirable to model the dynamics of syste
in the high energy-density regime, where the effects of radiation pressure and energy de|
are not neglected. Multidimensions and nonideal equations of state are other aspects of
realistic simulations that we also wish to consider. It is here that we expect to see the
efficacy of Newton—Krylov methods for accurate and efficient numerical calculations
radiative hydrodynamic problems.

APPENDIX: PRIMITIVE-VARIABLE RIEMANN SOLVER

In this appendix, we outline the details of the Riemann solver used in the Godur
method described in Section Ill. The principal task is to approximate time-centered val
of F andG in Eg. (11) at the cell interfaces of our one-dimensional spherical grid. O
approach differs somewhat from the conventional formulation of Godunov’s method
that we choose to work in terms of an augmented primitive-variable representation [
Defining the vectoW = (p, v, pe, p)7, where the superscrifif denotes the transpose, we
follow a two-step Hancock procedure discussed by Huynh in Ref. [33]. For convenien
we shall sometimes drop subscripts and superscripts for ease of notation when it caus
confusion.

In terms of primitive variables, Eq. (7) can be rewritten as

AW AW
LA, +K =0, 41
ot The g T (41)
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whereK = [pv, 0, v(pe + p), ypv]7, and the matrixd, is given by

v 0 0 O
10 v 1/p O

A= pe+p v O (42)
0 yp 0 w

Note that the third equation is superfluous with the fouth in this system. Since the spec
internal energy and the pressure are uniquely related by the rejatienp/(y — 1) for
ideal gases, it is not necessary to have two separate equations for advaneindp in
time. Nevertheless, we choose to purposely incorporate this redundancy in the gover
equations so as to avoid additional evaluations of the equation of state.
The next step in Hancock’s method is to determine the spatial gradigotshe primitive
variables in each cell. These are approximated by
~ WT+1 B ertl
S~ oA 43)
which are usually limited to ensure locally monotonic profiles [42]. The spatial gradier
are then used to find time-centered expressions for the primitive variables at the cell ec
using a Taylor series expansion in both space and time. Keeping only first-order terms,
have

Ar At OW?
2 n )
Wikae Wi+ 5 S+ 5 5 (44)
1/2 Ar At OWT |
Wi r ¥ Wiy — 5 Sl + 5 — 5 (45)

Subscriptd andRin Eqgs. (44) and (45) denote “left” and “right” states, respectively. The
time derivatives on the right hand sides of these equations are determined from the E
equations expressed in primitive variable form. Explicitly, the individual components |
oW /ot are

g—f = —%(Apv), (46)
e g~ p (48)
P A - vl (49)

In this study, we choose to limit our attention to piecewise constant data only, such t
S;j =0forall j.

On either side of each cell interface, we now have time-centered expressions for
primitive variables. The resulting sequence of Riemann problems is then solved to give

n+1/2 n+1/2 n+1/2
Wj+l/2 = R(Wj+1/2,u Wj+1/2,R)’ (50)
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whereR stands for “Riemann solver.” Finally, these quantities are used to compute
n+1/2 n+1/2 n+1/2 n+1/2

time-centered vectofs; /), ~ F(Wj.i)7) andGj); ~ G(Wjy),), and update the Euler
equations from time leved to n + 1 according to Eq. (11).

The one-dimensional Riemann problem, represented by the syRboEq. (50), de-
scribes the evolution of a planar discontinuity separating two uniform fluid states; it is t
key ingredient in Godunov’s method. Although there is no closed-form solution of the R
mann problem for the Euler equations (even for ideal equations of state), an iterative sch
can be employed to compute the exact solution numerically to an arbitrary level of precis
[43]. In a practical computation, though, it may be necessary to solve the Riemann prob
billions of times [7], which can be a demanding and undesirable task. Our approach t
is not to seek thexactsolution of Eq. (50), but rather to find a good approximation to i
using a less expensive Riemann solver.

Over the past two decades, many clever and sophisticated solution methodologies
been devised to find approximate solutions to the Riemann problem. One such approa
Roe’s method [27], which we use exclusively in this study. Roe’'s scheme is probably |
best known of all approximate Riemann solvers and works well even for relatively stro
shocks [7]. Since it was first introduced in 1981, various refinements have been m:
but here we limit our attention to a modified version of Roe’s original conserved-varial
method. The principal difference in our implementation is that we formulate the predici
stage of our solver in terms of primitive variables instead of conserved ones. Because
approach may be somewhat unfamiliar to the reader, details of the scheme are prov
below.

In discussing the modified version of Roe’s solver used here, itis convenient to first int
duce shorthand notation for the left and right states that appear in Eg. (50). We tempor:
drop the subscripi + 1/2 and the superscript+ 1/2 and simply write

L PR
UL UR
W, = , Wr= , 51
" e "= | wer (51)
pL Pr

for the time-centered vectors of primitive variables on either side of each cell interface.
so-called “Roe-average” of these states [27], which we denote by a tilde, is defined by

W= JPTWL+MWR_ (52)
VoL + /PR

This averaging procedure is a central aspect of Roe’s Riemann solver. Essentially,
primitive-variable formulation of Roe’s method requires that we replace the variable mat
A in Eq. (42) with a constant matrixp wit the Roe-average &,. Specifically, the Roe-
averaged matri)(z\p is given by

i p 0 0

- o & pto

Ro=| " P ", (53)
0 pe+p v O
0O yp v
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which has eigenvalues

M=0-8 lr=iz=0, is=0+C, (54)
and right eigenvectors
1 1 0 1
—C/p 0 0 ¢/p
RO=| " R® — R® = RO =| _ . (55
(e + B/ 0 1 @e+pyp| 0 O
62 0 0 62

Here, the symbat represents the sound speed for the Roe-averaged&tate/y p/p.
The final step is to express the difference between the left and right states of primi
variables as a superposition of right eigenvectors,

4
AW =Wg—W_ =) oR", (56)
i=1

where the coefficients (right eigenvector projectiamsire given by

_ 1 (A p CAv) (57)
o] = 5g2 p—p v),
oy = Ap — Ap/f:z, (58)
1 L
a3 = Aps — ﬁ[Ap(,oS + P, (59)
1 -
0 = 55 (Ap+ pEAY). (60)

With these data, the time-centered vectors of primitive variables at each cell interface
be written as

4
WIHE = W0 +We) — 2 > signi) e R, (61)

i=1
which completes the Riemann solution. In practice, the wave speeds in the solution
bounded by comparinig with v, — ¢, x> with v, andvg, andi.4 with vg + cg, and always
selecting the maximum. The symbals andcg denote the sound speeds in the left anc
right states, respectivelg; = /ypL /oL andcg = /y pr/per. We should also remark that
the procedure outlined above can be described as an “all-shock” method because it al
for rarefactive shocks with a concomitant violation of the second law of thermodynami
Various “entropy fixes” have been devised for Roe’s Riemann solver, but we shall
attempt to describe them here since they are not required for the class of test probl
considered in this investigation. For further reading on this subject, the reader is referre
Refs. [5, 44].
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